--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: image_segmentation_classifier results: [] --- # image_segmentation_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the taresco/newspaper_ocr dataset. It achieves the following results on the evaluation set: - Loss: 0.0033 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0014 | 1.0 | 2031 | 0.0065 | 0.9986 | | 0.0005 | 2.0 | 4062 | 0.0033 | 0.9993 | | 0.0003 | 3.0 | 6093 | 0.0058 | 0.9990 | | 0.0002 | 4.0 | 8124 | 0.0043 | 0.9983 | | 0.0001 | 5.0 | 10155 | 0.0036 | 0.9990 | ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0