File size: 1,974 Bytes
16e24f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fine_tuned_all_domains
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_all_domains

This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1512
- Accuracy: 0.9386

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5166        | 0.0111 | 100  | 0.2467          | 0.8979   |
| 0.2611        | 0.0223 | 200  | 0.2322          | 0.9157   |
| 0.2354        | 0.0334 | 300  | 0.1831          | 0.9220   |
| 0.1962        | 0.0446 | 400  | 0.2122          | 0.9222   |
| 0.1877        | 0.0557 | 500  | 0.3002          | 0.8910   |
| 0.1907        | 0.0669 | 600  | 0.1490          | 0.9431   |
| 0.1567        | 0.0780 | 700  | 0.1964          | 0.9239   |
| 0.1878        | 0.0891 | 800  | 0.1819          | 0.9274   |
| 0.1788        | 0.1003 | 900  | 0.1512          | 0.9386   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0