FastFlowLM commited on
Commit
8deccd0
·
verified ·
1 Parent(s): 1902964

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ tags:
7
+ - deepseek
8
+ - distillation
9
+ - llama
10
+ - llama-compatible
11
+ - deepseek-r1
12
+ - text-generation
13
+ - AMD
14
+ - Ryzen
15
+ - NPU
16
+ pipeline_tag: text-generation
17
+ base_model:
18
+ - deepseek-ai/Deepseek-R1-Distill-Llama-8B
19
+ ---
20
+
21
+ # 🔬 Deepseek R1 Distill LLaMA 8B – Optimized for FastFlowLM on AMD Ryzen™ AI NPU (XDNA2 Only)
22
+
23
+ ## Model Summary
24
+ This model is based on **Deepseek R1 Distill LLaMA 8B**, a distilled version of a LLaMA-compatible architecture trained by Deepseek AI. It is designed for high-speed inference with low power consumption using the FastFlowLM runtime on Ryzen™ AI NPUs.
25
+
26
+ > ✅ **Released under the MIT License**
27
+
28
+ ## 📝 License & Usage Terms
29
+
30
+ ### Base Model License
31
+ - Released by Deepseek AI under the MIT License:
32
+ 👉 https://huggingface.co/deepseek-ai/Deepseek-R1-Distill-Llama-8B
33
+
34
+ - License permits:
35
+ - Commercial and non-commercial use
36
+ - Redistribution and modification
37
+ - No attribution requirement (though encouraged)
38
+
39
+ ### Redistribution Notice
40
+ - This repository does **not** include original or modified Deepseek model weights.
41
+ - You must download the base weights from Hugging Face directly:
42
+ 👉 https://huggingface.co/deepseek-ai/Deepseek-R1-Distill-Llama-8B
43
+
44
+ ### If Fine-tuned
45
+ If the model has been quantized or further fine-tuned:
46
+
47
+ - **Base Model License**: MIT
48
+ - **Derivative Weights License**: [e.g., MIT, CC-BY-NC-4.0, custom]
49
+ - **Training Dataset License(s)**:
50
+ - [Dataset A] – [license]
51
+ - [Dataset B] – [license]
52
+
53
+ Ensure compliance with the licenses of any datasets used in training.
54
+
55
+ ## Intended Use
56
+ - **Best Suited For**: Local LLM inference, chat assistants, coding helpers, research
57
+ - **Not Suited For**: Sensitive or safety-critical use cases without additional testing
58
+
59
+ ## Limitations & Risks
60
+ - May exhibit factual inaccuracies or biases
61
+ - Distillation may reduce generalization on edge cases
62
+ - Performance depends on quantization strategy and runtime settings
63
+
64
+ ## Citation
65
+ ```bibtex
66
+ @misc{deepseek2024r1,
67
+ title={DeepSeek R1: Distilled LLaMA-based Model},
68
+ author={Deepseek AI},
69
+ year={2024},
70
+ url={https://huggingface.co/deepseek-ai/Deepseek-R1-Distill-Llama-8B}
71
+ ```