File size: 7,555 Bytes
0a78f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import torch
import json
import pandas as pd
from pathlib import Path
from safetensors.torch import load_file
from faster_whisper import WhisperModel
from google import genai
from google.genai import types
import soundfile as sf
import re
from tqdm import tqdm
import itertools

# Internal Modules
from src.config import TrainConfig
from src.chatterbox_.mtl_tts import ChatterboxMultilingualTTS
from src.chatterbox_.models.t3.t3 import T3

# ==============================================================================
# CONFIGURATION
# ==============================================================================
GEMINI_API_KEY = "INSERT_API_KEY_HERE"
CHECKPOINT_PATH = "./chatterbox_stage2_output/checkpoint-16"
REFERENCE_WAV = "/workspaces/work/Chatterbox-Finnish/GrowthMindset_Chatterbox_Dataset/wavs/growthmindset_00000.wav"

# Align with evaluate_checkpoints.py
LEAN_HOLDOUT_IDS = [
    "growthmindset_00547", # Short
    "growthmindset_00548", # Medium/Long
    "growthmindset_00564"  # Very expressive
]

EVERYDAY_PHRASES = [
    "Voisitko ystävällisesti auttaa minua tämän asian kanssa?", # Short
    "Tänään on todella kaunis päivä, joten ajattelin lähteä ulos kävelemään ja nauttimaan auringosta ennen kuin ilta viilenee.", # Long 1
    "Huomenta kaikille, toivottavasti teillä on ollut mukava aamu ja olette valmiita aloittamaan uuden päivän täynnä mielenkiintoisia haasteita ja onnistumisia." # Long 2
]

# Parameter Grid
PARAM_GRID = {
    "repetition_penalty": [1.2, 1.5],
    "temperature": [0.7, 0.8],
    "exaggeration": [0.5, 0.6],
    "cfg_weight": [0.3, 0.5]
}

OUTPUT_BASE_DIR = "./param_sweep_results"
# ==============================================================================

def setup_gemini():
    return genai.Client(api_key=GEMINI_API_KEY)

def get_mos_score(client, audio_path, target_text):
    try:
        audio_file = client.files.upload(file=audio_path)
        import time
        for _ in range(10):
            file_info = client.files.get(name=audio_file.name)
            if file_info.state == "ACTIVE": break
            time.sleep(1)

        prompt = f"""
        Olet asiantunteva puheenlaadun arvioija.
        Arvioi oheinen äänitiedosto, jossa hienoviritetty TTS-malli sanoo: "{target_text}"
        
        Arvioi asteikolla 1-5 (1=huono, 5=erinomainen):
        1. Luonnollisuus: Kuulostaako se ihmiseltä?
        2. Selkeys: Ovatko sanat helposti erotettavissa?
        3. Prosodia: Kuulostaako rytmi luonnolliselta suomen kielelle?
        
        Vastaa TARKALLEEN tässä JSON-muodossa: {{"mos": <numero>, "reason": "<lyhyt_perustelu>"}}
        """
        response = client.models.generate_content(
            model='gemini-3-flash-preview',
            contents=[prompt, audio_file],
            config=types.GenerateContentConfig(response_mime_type="application/json")
        )
        result = json.loads(response.text)
        if isinstance(result, list): result = result[0]
        return result
    except Exception:
        return {"mos": 0}

def calculate_wer(reference, hypothesis):
    try:
        import jiwer
        return jiwer.wer(reference, hypothesis)
    except ImportError:
        def clean(t): return re.sub(r'[^\w\s]', '', t.lower()).strip()
        ref_words = clean(reference).split()
        hyp_words = clean(hypothesis).split()
        if not ref_words: return 0.0
        import difflib
        return 1.0 - difflib.SequenceMatcher(None, ref_words, hyp_words).ratio()

def main():
    cfg = TrainConfig()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    os.makedirs(OUTPUT_BASE_DIR, exist_ok=True)
    
    # Load metadata for holdouts
    meta = pd.read_csv(cfg.csv_path, sep="|", header=None, quoting=3)
    lean_meta = meta[meta[0].isin(LEAN_HOLDOUT_IDS)]
    sweep_sentences = list(lean_meta[1]) + EVERYDAY_PHRASES
    
    print("Loading Faster Whisper...")
    whisper_model = WhisperModel("large-v3", device=device, compute_type="float16" if device == "cuda" else "int8")
    
    gemini_client = setup_gemini()

    # Load engine and checkpoint weights once
    engine = ChatterboxMultilingualTTS.from_local(cfg.model_dir, device=device)
    weights_path = Path(CHECKPOINT_PATH) / "model.safetensors"
    checkpoint_state = load_file(str(weights_path))
    t3_state_dict = {k[3:] if k.startswith("t3.") else k: v for k, v in checkpoint_state.items()}
    if "text_emb.weight" in t3_state_dict:
        engine.t3.hp.text_tokens_dict_size = t3_state_dict["text_emb.weight"].shape[0]
        engine.t3 = T3(hp=engine.t3.hp).to(device)
    engine.t3.load_state_dict(t3_state_dict, strict=False)
    engine.t3.eval()

    # Generate parameter combinations
    keys, values = zip(*PARAM_GRID.items())
    combinations = [dict(zip(keys, v)) for v in itertools.product(*values)]
    
    print(f"Starting sweep of {len(combinations)} combinations using {len(sweep_sentences)} sentences...")
    
    sweep_results = []

    for i, params in enumerate(combinations):
        print(f"\n[{i+1}/{len(combinations)}] Testing: {params}")
        
        total_wer = 0
        total_mos = 0
        valid_mos_count = 0
        
        for j, text in enumerate(sweep_sentences):
            wav_tensor = engine.generate(
                text=text,
                language_id="fi",
                audio_prompt_path=REFERENCE_WAV,
                **params
            )
            
            # Format filename with key params for easy manual review
            param_str = f"rp{params['repetition_penalty']}_temp{params['temperature']}_ex{params['exaggeration']}_cfg{params['cfg_weight']}"
            audio_path = os.path.join(OUTPUT_BASE_DIR, f"trial_{i}_sent_{j}_{param_str}.wav")
            sf.write(audio_path, wav_tensor.squeeze().cpu().numpy(), engine.sr)
            
            # WER
            segments, _ = whisper_model.transcribe(audio_path, language="fi")
            hyp = " ".join([s.text for s in segments])
            wer = calculate_wer(text, hyp)
            total_wer += wer
            
            # MOS
            mos_data = get_mos_score(gemini_client, audio_path, text)
            if mos_data.get('mos', 0) > 0:
                total_mos += mos_data['mos']
                valid_mos_count += 1
            
        avg_wer = total_wer / len(sweep_sentences)
        avg_mos = total_mos / valid_mos_count if valid_mos_count > 0 else 0
        
        result_entry = {
            "trial_id": i,
            "params": params,
            "avg_wer": avg_wer,
            "avg_mos": avg_mos
        }
        sweep_results.append(result_entry)
        print(f"Result: WER={avg_wer:.4f}, MOS={avg_mos:.2f}")

        # Save intermediate results
        with open(os.path.join(OUTPUT_BASE_DIR, "sweep_summary_partial.json"), "w") as f:
            json.dump(sweep_results, f, indent=4)

    # Find the best combination
    # We want low WER and high MOS. A simple score: MOS * (1 - WER)
    best_score = -1
    best_params = None
    
    for r in sweep_results:
        score = r['avg_mos'] * (1 - r['avg_wer'])
        if score > best_score:
            best_score = score
            best_params = r

    print("\n" + "="*60)
    print("SWEEP COMPLETE")
    print(f"Best Params: {best_params['params']}")
    print(f"Best Metrics: WER={best_params['avg_wer']:.4f}, MOS={best_params['avg_mos']:.2f}")
    print("="*60)

    with open(os.path.join(OUTPUT_BASE_DIR, "sweep_summary.json"), "w") as f:
        json.dump(sweep_results, f, indent=4)

if __name__ == "__main__":
    main()