File size: 2,503 Bytes
627755f 501d5b7 627755f 501d5b7 627755f dcda51a 627755f 703f3e2 627755f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language:
- en
tags:
- audio-text-to-audio-text
- speech-understanding
- audio
- chat
license: apache-2.0
datasets:
- custom
metrics:
- wer
- bleu
- AIR-Bench
---
<div align="center">
<h1>
EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
</h1>
</div>
<p align="center">
<font size="3">
<a href="https://github.com/FreedomIntelligence/EchoX">🐈⬛ Github</a> | 
<a href="https://arxiv.org/abs/2509.09174">📃 Paper</a> | 
<a href="https://huggingface.co/spaces/FreedomIntelligence/EchoX">🚀 Space (8B)</a> | 
<a href="https://huggingface.co/datasets/FreedomIntelligence/EchoX-Dialougues">📊 EchoX-Dialougues</a> | 
<a href="https://huggingface.co/datasets/KurtDu/EchoX-Dialogues-Plus">📊 EchoX-Dialogues-Plus</a>
</font>
</p>
## Model Description
EchoX is a Speech-to-Speech large language model that addresses the acoustic-semantic gap. This is the 3B version. By introducing **Echo Training**, EchoX integrates semantic and acoustic learning, mitigating the degradation of reasoning ability observed in existing speech-based LLMs. It is trained on only 10k hours of data while delivering state-of-the-art results in knowledge-based question answering and speech interaction tasks.
### Key Features
<div>
<ul>
<font size="3"><li>Mitigates Acoustic-Semantic Gap in Speech-to-Speech LLMs</li></font>
<font size="3"><li>Introduces Echo Training with a Novel Three-Stage Pipeline (S2T, T2C, Echo)</li></font>
<font size="3"><li>Trained on Only 10k Hours of Curated Data, Ensuring Efficiency</li></font>
<font size="3"><li>Achieves State-of-the-Art Performance in Knowledge-Based QA Benchmarks</li></font>
<font size="3"><li>Preserves Reasoning and Knowledge Abilities for Interactive Speech Tasks</li></font>
</ul>
</div>
## Usage
Load the EchoX model and run inference with your audio files as shown in the <a href="https://github.com/FreedomIntelligence/EchoX">GitHub repository</a>.
# <span>📖 Citation</span>
```
@misc{zhang2025echoxmitigatingacousticsemanticgap,
title={EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs},
author={Yuhao Zhang and Yuhao Du and Zhanchen Dai and Xiangnan Ma and Kaiqi Kou and Benyou Wang and Haizhou Li},
year={2025},
eprint={2509.09174},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.09174},
}
``` |