Upload 2 files
Browse files- README.md +77 -0
- asset/XMAiNframe.png +0 -0
README.md
CHANGED
|
@@ -1,3 +1,80 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
<p align="center">
|
| 6 |
+
<img src="./asset/XMAiNframe.png" width="560px" alt="logo">
|
| 7 |
+
</p>
|
| 8 |
+
|
| 9 |
+
<div align="center">
|
| 10 |
+
|
| 11 |
+
# XMAiNframe: A Large Language Model for Mainframe Modernization
|
| 12 |
+
</div>
|
| 13 |
+
|
| 14 |
+
## Introduction
|
| 15 |
+
|
| 16 |
+
We are introducing **XMAiNframe**, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. XMAiNframe is built on top of DeepSeek-Coder 7B and is available with 7B and 10.5B parameters.
|
| 17 |
+
Additionally, we present [MainframeBench](https://huggingface.co/datasets/Fsoft-AIC/MainframeBench), a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMAiNframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMAiNframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMAiNframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
## Model Versions
|
| 21 |
+
|
| 22 |
+
We release XMAiNframe with 7B and 10.5B parameters, including base and instruct models, to the public. XMAiNframe 10.5B is expanded from DeepSeek-Coder 7B by the depth up-scaling method without introducing additional modules or dynamic expert selection methods.
|
| 23 |
+
|
| 24 |
+
<div align="center">
|
| 25 |
+
|
| 26 |
+
| **Model** | **Download** |
|
| 27 |
+
| :-----------------------------: | :----------------------------------------------------------: |
|
| 28 |
+
| XMAiNframe-base-7b | [🤗 HuggingFace](https://https://huggingface.co/Fsoft-AIC/XMAiNframe-base-7b/) |
|
| 29 |
+
| XMAiNframe-instruct-7b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-7b) |
|
| 30 |
+
| XMAiNframe-base-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-base-10.5b) |
|
| 31 |
+
| XMAiNframe-instruct-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-10.5b) |
|
| 32 |
+
|
| 33 |
+
</div>
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## Quickstart
|
| 37 |
+
|
| 38 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
|
| 44 |
+
model = AutoModelForCausalLM.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b")
|
| 45 |
+
messages=[
|
| 46 |
+
{'role':'system','content':"You are a helpful assistant"},
|
| 47 |
+
{'role': 'user', 'content': 'What is the future of Mainframe?'}
|
| 48 |
+
]
|
| 49 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
| 50 |
+
|
| 51 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
| 52 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
## Additional Information
|
| 56 |
+
### Other Resources:
|
| 57 |
+
- Github: https://github.com/FSoft-AI4Code/XMainframe
|
| 58 |
+
- Paper: https://arxiv.org/html/2406.11927v1
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
### License
|
| 62 |
+
[MIT License](LICENSE)
|
| 63 |
+
|
| 64 |
+
### Citation Information
|
| 65 |
+
More details can be found in our [paper](https://github.com/FSoft-AI4Code/).
|
| 66 |
+
|
| 67 |
+
If you're using XMAiNframe, please cite using this BibTeX:
|
| 68 |
+
```
|
| 69 |
+
@article{,
|
| 70 |
+
title={XMAiNframe: A Large Language Model for Mainframe Modernization},
|
| 71 |
+
author={},
|
| 72 |
+
journal={arXiv preprint },
|
| 73 |
+
year={2024}
|
| 74 |
+
}
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
# Contact us
|
| 78 |
+
If you have any questions, comments or suggestions, please do not hesitate to contact us.
|
| 79 |
+
- Website: [fpt-aicenter](https://www.fpt-aicenter.com/ai-residency/)
|
| 80 |
+
- Email: support.ailab@fpt.com
|
asset/XMAiNframe.png
ADDED
|