GUIAgent commited on
Commit
94520fc
ยท
verified ยท
1 Parent(s): 45a77b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -503
README.md CHANGED
@@ -37,48 +37,7 @@ dataset.
37
  modelโ€™s robustness and generalization capabilities.
38
 
39
  ## Quick Start
40
-
41
- ---
42
- license: apache-2.0
43
- datasets:
44
- - GUIAgent/Magic-RICH
45
- language:
46
- - en
47
- base_model:
48
- - Qwen/Qwen2-VL-7B-Instruct
49
- ---
50
- ## News
51
-
52
- * [2025-07-20] ๐Ÿ“„๐Ÿ“„๐Ÿ“„ We have released the **technical report** of MagicGUI! Check it out [here](https://arxiv.org/abs/2508.03700).
53
- * [2025-07-20] ๐Ÿš€๐Ÿš€๐Ÿš€ We have open-sourced **MagicGUI**, an on-device GUI agent capable of operating Chinese & English apps and equipped with RFT-enhanced reasoning abilities.
54
-
55
- ## Overview
56
-
57
- MagicGUI is an open-source GUI agent model developed by Honor, built on Qwen2-VL with 7 billion parameters. It demonstrates outstanding capabilities in visual grounding, screen question answering, and action sequence planning and execution. MagicGUI enables multimodal perception, understanding, and automated execution of user tasks on mobile devices.
58
-
59
- **Data Collection Framework**: Propose a scalable and modular framework for GUI data collection that efficiently gathers high-quality data on mobile devices.
60
-
61
- **Powerful Perception and Grounding Capabilities**: Enhance the perception and grounding abilities on mobile device screens by integrating large-scale knowledge through tasks such as element referring, element grounding, and screen captioning.
62
-
63
- **Unified Action Space**: Develop a comprehensive and unified action space for various mobile platforms, encompassing fundamental operations like Tap, Text Input, and Scroll, while also supporting more complex actions such as Wait, Drag, and Takeover.
64
-
65
- **Planning-Oriented Reasoning**: Implement a planning-oriented reasoning mechanism to improve the stability of task execution and enhance the accuracy of action decisions in dynamic environments.
66
-
67
- **Two-Stage Training Paradigm**: Strengthen core perception, localization, and navigation capabilities through Continued Pre-training (CPT), while enhancing model robustness and generalization via Reinforcement Fine-tuning (RFT).
68
-
69
- ## Framework
70
- The overall training framework of our MagicGUI contains two stages:
71
-
72
- **Stage I**: Continue Pre-training (CPT), which involves training a
73
- foundational model on a large and diverse dataset followed by an annealing phase using a balanced and high-quality
74
- dataset.
75
-
76
- **Stage II**: Reinforcement Fine-tuning (RFT), aimed at further enhancing the
77
- modelโ€™s robustness and generalization capabilities.
78
-
79
- ## Quick Start
80
-
81
- ### Install dependencies
82
 
83
  ```bash
84
  git clone https://github.com/MagicAgent-GUI
@@ -536,467 +495,6 @@ python run_eval.py --data GUI-Odyssey --model MagicGUI_Path --mode all
536
 
537
  If **MagicGUI** is useful for your research, please cite:
538
 
539
- ```bibtex
540
- @misc{tang2025magicguifoundationalmobilegui,
541
- title={MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning},
542
- author={Liujian Tang and Shaokang Dong and Yijia Huang and Minqi Xiang and Hongtao Ruan and Bin Wang and Shuo Li and Zhiheng Xi and Zhihui Cao and Hailiang Pang and Heng Kong and He Yang and Mingxu Chai and Zhilin Gao and Xingyu Liu and Yingnan Fu and Jiaming Liu and Xuanjing Huang and Yu-Gang Jiang and Tao Gui and Qi Zhang and Kang Wang and Yunke Zhang and Yuran Wang},
543
- year={2025},
544
- eprint={2508.03700},
545
- archivePrefix={arXiv},
546
- primaryClass={cs.HC},
547
- url={https://arxiv.org/abs/2508.03700},
548
- }
549
- ```
550
-
551
- ### Download the model
552
-
553
- Download [MagicGUI-RFT](https://huggingface.co/GUIAgent/MagicGUI_RFT) and [MagicGUI-CPT](https://huggingface.co/GUIAgent/MagicGUI_CPT).
554
-
555
- #### Huggingface Inference
556
-
557
- ```python
558
- import torch
559
- from utils.model import Qwen2VLChat
560
-
561
- # 1. Load the model and tokenizer
562
- model_path = "./models/RFT" # model path
563
- model = Qwen2VLChat.from_pretrained(model_path, min_pixels=4*28*28, max_pixels=768*28*28)
564
- model = model.to("cuda:0")
565
-
566
- # 2. Build the input
567
- instruction = """ไฝ ๆ˜ฏไธ€ไธช่ฎญ็ปƒๆœ‰็ด ็š„ๆ‰‹ๆœบๆ™บ่ƒฝไฝ“๏ผŒ่ƒฝๅคŸๅธฎๅŠฉ็”จๆˆท่ฟ›่กŒๅ•ๆญฅๅฏผ่ˆชไปปๅŠกใ€‚ๅทฒ็Ÿฅๅฝ“ๅ‰ๆ™บ่ƒฝๆ‰‹ๆœบ็š„ๆˆชๅ›พ<image>๏ผŒๅ’Œ็”จๆˆทๆŒ‡ไปค"ๆŸฅ็œ‹ไผšๅ‘˜ไฟกๆฏ"่ฏท่พ“ๅ‡บๆญฃ็กฎ็š„ๅ‡ฝๆ•ฐ่ฐƒ็”จไปฅๅฎž็Žฐ็”จๆˆทๆŒ‡ไปคใ€‚้™คไบ†ๅ‡ฝๆ•ฐ่ฐƒ็”จไน‹ๅค–๏ผŒไฝ ไธ่ƒฝ่พ“ๅ‡บไปปไฝ•ๅ…ถไป–ๅ†…ๅฎนใ€‚ไฝ ๅฏไปฅ่ฐƒ็”จไปฅไธ‹ๅ‡ฝๆ•ฐๆฅๆŽงๅˆถๆ™บ่ƒฝๆ‰‹ๆœบ๏ผš- UIๅŸบ็ก€ๆ“ไฝœ๏ผš1. tap(x: float,y: float) ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽๅœจๆ™บ่ƒฝๆ‰‹ๆœบๅฑๅน•ไธŠ็‚นๅ‡ป็‰นๅฎš็‚นใ€‚ๅๆ ‡ x ๅ’Œ y ่กจ็คบๅพ…็‚นๅ‡ปๆŽงไปถ็š„ไธญๅฟƒไฝ็ฝฎใ€‚2. scroll(x: float,y: float,direction: str) ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽไปŽ่ตทๅง‹ๅๆ ‡ (x,y) ๅผ€ๅง‹ๅœจๆ™บ่ƒฝๆ‰‹ๆœบๅฑๅน•ไธŠๆป‘ๅŠจๆ“ไฝœ๏ผŒๆ–นๅ‘ไธบๆ‰‹ๆŒ‡ๆป‘ๅŠจ็š„ๆ–นๅ‘ใ€‚ๅๆ ‡ x ๅ’Œ y ่กจ็คบๅฑๅน•ไธŠๅพ…ๆป‘ๅŠจๆŽงไปถ็š„ไธญๅฟƒไฝ็ฝฎใ€‚ๆ–นๅ‘ๅฏไปฅๆ˜ฏ "up"ใ€"down"ใ€"left" ๆˆ– "right"ใ€‚3. text(x: float,y: float,text_input: str) ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽๅœจๆ™บ่ƒฝๆ‰‹ๆœบๅฑๅน•ไธŠ่พ“ๅ…ฅๆŒ‡ๅฎš็š„textใ€‚ๅๆ ‡ x ๅ’Œ y ่กจ็คบๅพ…็‚นๅ‡ปๆŽงไปถ็š„ไธญๅฟƒไฝ็ฝฎใ€‚- ๆ‰‹ๆœบๆŒ‰้”ฎๆ“ไฝœ๏ผš4. navigate_back() ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽ่ฟ”ๅ›žๆ™บ่ƒฝๆ‰‹ๆœบ็š„ไธŠไธ€ไธชๅฑๅน•ใ€‚5. navigate_home() ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽ่ฟ”ๅ›žๆ‰‹ๆœบ็š„home screenๆˆ–ๅ…ณ้—ญๅฝ“ๅ‰ๅบ”็”จใ€‚- ๅ…ถไป–ๆ“ไฝœ๏ผš6. long_press(x: float,y: float) ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽๅœจๆ™บ่ƒฝๆ‰‹ๆœบๅฑๅน•ไธŠ็š„็‰นๅฎš็‚นๆ‰ง่กŒ้•ฟๆŒ‰ๆ“ไฝœใ€‚ๅๆ ‡ x ๅ’Œ y ่กจ็คบๅพ…็‚นๅ‡ปๆŽงไปถ็š„ไธญๅฟƒไฝ็ฝฎใ€‚7. wait() ่ฏฅๅ‡ฝๆ•ฐ่กจ็คบๅœจๅฝ“ๅ‰้กต้ข็ญ‰ๅ€™ใ€‚8. enter() ่ฏฅๅ‡ฝๆ•ฐ่กจ็คบๆŒ‰ไธ‹enter้”ฎใ€‚9. take_over(text_input: str) ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽๆ็คบ็”จๆˆทๆŽฅ็ฎกๆ™บ่ƒฝๆ‰‹ๆœบ๏ผŒๅ…ถไธญ text_input ๆ˜ฏๆ็คบ็”จๆˆทๆŽฅ็ฎกๆ‰‹ๆœบ็š„ๅŽŸๅ› ใ€‚ๅฆ‚ๆžœๅŽŸๅ› ไธ็กฎๅฎš๏ผŒ่ฏทๅกซๅ†™โ€œ่ฏทๆ‚จๆŽฅ็ฎกๅฝ“ๅ‰็•Œ้ขโ€ใ€‚10. drag(x1: float,y1: float,x2: float,y2: float) ่ฏฅๅ‡ฝๆ•ฐๆ‰ง่กŒไธ€ไธชๅฏน่ตทๅง‹ๅ’Œ็ปˆ็‚นๆ•ๆ„Ÿ็š„ๆ‹–ๅŠจๆ“ไฝœ๏ผŒ่กจ็คบๆ‰‹ๆŒ‡ไปŽ็‚น1ๆ‹–ๅˆฐ็‚น2ใ€‚ๅธธ่ง็š„ๅœบๆ™ฏๅŒ…ๆ‹ฌๆป‘ๅ—ๆ‹–ๅŠจใ€ๆปšๅŠจ้€‰ๆ‹ฉๅ™จๆ‹–ๅŠจๅ’Œๅ›พ็‰‡่ฃๅ‰ชใ€‚11. screen_shot() ่ฏฅๅ‡ฝๆ•ฐ็”จไบŽๆˆชๅ›พใ€‚12. long_screen_shot() ่ฏฅๅ‡ฝๆ•ฐๆ‰ง่กŒ้•ฟๆˆชๅ›พใ€‚13. call_api(api_name: str,params: str) ่ฐƒ็”จๆŒ‡ๅฎš็š„APIๅนถไผ ๅ…ฅ็ป™ๅฎš็š„ๅ‚ๆ•ฐใ€‚api_nameๆ˜ฏAPI็š„ๅ็งฐใ€‚paramsๅŒ…ๅซAPIๆ‰€้œ€็š„่พ“ๅ…ฅๅ‚ๆ•ฐใ€‚ไพ‹ๅฆ‚๏ผŒcall_api(Amazon, open)ๆ„ๅ‘ณ็€ๆ‰“ๅผ€ไบš้ฉฌ้€ŠAPPใ€‚ๅฆ‚ๆžœไฝ ๅ‘็Žฐๅฝ“ๅ‰ๆŒ‡ไปคๆ— ๆณ•ๅœจๅฝ“ๅ‰้กต้ขไธŠๆ‰ง่กŒ๏ผŒไฝ ้œ€่ฆ่พ“ๅ‡บno_answerใ€‚ๅฆ‚ๆžœไฝ ๅ‘็Žฐๅฝ“ๅ‰ๆŒ‡ไปคๅทฒๅฎŒๆˆ๏ผŒไฝ ้œ€่ฆ่พ“ๅ‡บaction_completedใ€‚"""
568
-
569
- image_path = "./assets/test_action.png"
570
-
571
- # 3. Build the message format
572
- messages = [{"type": "image", "value":f"{image_path}",
573
- {"type": "text", "value":f"{instruction}"]
574
-
575
- # 4. Inference
576
- response = model.generate(
577
- message = messages,
578
- )
579
-
580
- print(response)
581
- ```
582
-
583
- Expected output:
584
-
585
- ```JSON
586
- {"tap(700,964)"}
587
- ```
588
-
589
- ### Action Space
590
-
591
- At each step, the agent outputs is a single JSON object that contains:
592
- - One (and only one) primitive action, chosen from the list below;
593
- - Optional modifiers (`duration`, `thought`) and/or a task-level flag (`STATUS`).
594
-
595
- Note that all keywords are **case-sensitive**, and we use **compact JSON** (i.e., no extra whitespace), which affects the tokenizerโ€™s behavior.
596
-
597
- <table>
598
- <thead>
599
- <tr>
600
- <th>Action</th>
601
- <th>Description</th>
602
- <th>Conditions for R<sub>acc</sub> = +2</th>
603
- <th>Example</th>
604
- </tr>
605
- </thead>
606
- <tbody>
607
- <tr>
608
- <td><b>Tap</b></td>
609
- <td>Click at coordinate (x, y)</td>
610
- <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) โ‰ค 14%</td>
611
- <td><code>tap(x,y)</code></td>
612
- </tr>
613
- <tr>
614
- <td><b>Scroll</b></td>
615
- <td>Scroll at coordinate (x, y) with<br>direction up / down / left / right</td>
616
- <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) โ‰ค 14%<br>and direction = gt[direction]</td>
617
- <td><code>scroll(x,y,direction)</code></td>
618
- </tr>
619
- <tr>
620
- <td><b>Text Input</b></td>
621
- <td>Type <i>text</i> at coordinate (x, y)</td>
622
- <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) โ‰ค 14%<br>and F1(text, gt[text]) > 0.5</td>
623
- <td><code>text(x,y,text_input)</code></td>
624
- </tr>
625
- <tr>
626
- <td><b>Navigation Back</b></td>
627
- <td>Adb command to go back to the previous page</td>
628
- <td>โ€“</td>
629
- <td><code>navigate_back()</code></td>
630
- </tr>
631
- <tr>
632
- <td><b>Navigation Home</b></td>
633
- <td>Adb command to go to the home screen of the mobile</td>
634
- <td>โ€“</td>
635
- <td><code>navigate_home()</code></td>
636
- </tr>
637
- <tr>
638
- <td><b>Long Press</b></td>
639
- <td>Long press at coordinate (x, y)</td>
640
- <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) โ‰ค 14%</td>
641
- <td><code>long_press(x,y)</code></td>
642
- </tr>
643
- <tr>
644
- <td><b>Finish</b></td>
645
- <td>Indicate that navigation task has been completed</td>
646
- <td>โ€“</td>
647
- <td><code>finish()</code></td>
648
- </tr>
649
- <tr>w
650
- <td><b>Wait</b></td>
651
- <td>Wait for several seconds</td>
652
- <td>โ€“</td>
653
- <td><code>wait()</code></td>
654
- </tr>
655
- <tr>
656
- <td><b>Enter</b></td>
657
- <td>Adb command to press enter</td>
658
- <td>โ€“</td>
659
- <td><code>enter()</code></td>
660
- </tr>
661
- <tr>
662
- <td><b>Takeover</b></td>
663
- <td>Request user takeover</td>
664
- <td>โ€“</td>
665
- <td><code>take_over(message)</code></td>
666
- </tr>
667
- <tr>
668
- <td><b>Drag</b></td>
669
- <td>Drag from coordinate (xโ‚, yโ‚) to (xโ‚‚, yโ‚‚)</td>
670
- <td>
671
- dist([xโ‚, yโ‚], [x<sub>1c</sub>, y<sub>1c</sub>]) โ‰ค 7.5%<br>
672
- and dist([xโ‚‚, yโ‚‚], [x<sub>2c</sub>, y<sub>2c</sub>]) โ‰ค 7.5%
673
- </td>
674
- <td><code>drag(x1,y1,x2,y2)</code></td>
675
- </tr>
676
- <tr>
677
- <td><b>Call API</b></td>
678
- <td>Adb command to <i>open</i> or <i>kill</i> app</td>
679
- <td>app = gt[app]<br>and open/kill = gt[operation]</td>
680
- <td><code>call_api(api_name,operation)</code></td>
681
- </tr>
682
- <tr>
683
- <td><b>Screenshot</b></td>
684
- <td>Adb command to take a screenshot</td>
685
- <td>โ€“</td>
686
- <td><code>screen_shot()</code></td>
687
- </tr>
688
- <tr>
689
- <td><b>Long Screenshot</b></td>
690
- <td>Adb command to take a long screenshot</td>
691
- <td>โ€“</td>
692
- <td><code>long_screen_shot()</code></td>
693
- </tr>
694
- </tbody>
695
- </table>
696
-
697
-
698
- ## Evaluation
699
- ### 1.Data preparation
700
- Please download the four compressed files from the [Magic-RICH dataset](https://huggingface.co/datasets/GUIAgent/Magic-RICH) and extract them into the .datasets/ directory.
701
-
702
- - `assets/`
703
- - `datasets/`
704
- - `Routine`
705
- - `Instruction`
706
- - `Complex`
707
- - `Handing_Exception`
708
- - `utils/`
709
-
710
- For the preparation of other open-source datasets, please refer to [Other datasets preparation](datasets/eval_data_process/readme.md).
711
-
712
- ### 2. Param
713
- We use run_eval.py for evaluation.
714
-
715
- - `--data`: Name of a eval dataset
716
- - `--model`: Path to the model
717
- - `--work-dir (str, default to '.')`: Directory to save evaluation results
718
- - `--mode (str, default: 'all', choices: ['all', 'infer'])`: If set to "all", the script performs both inference and evaluation; if set to "infer", it performs inference only.
719
- - `--eval_model_path (str, default: 'None')`:'Path to eval model (required if mode is 'all' and data is 'ScreenQA-short')'
720
-
721
- ### 3. Run
722
- ```python
723
- # Referring Benchmark
724
- python run_eval.py --data ScreenQA-short --model MagicGUI_Path --mode all --eval_model_path Eval_Model_Path
725
- python run_eval.py --data ScreenSpot_v2_mobile --model MagicGUI_Path --mode all
726
- python run_eval.py --data Os-Atlas-mobile --model MagicGUI_Path --mode all
727
- # Magic-RICH dataset
728
- python run_eval.py --data Routine --model MagicGUI_Path --mode all
729
- python run_eval.py --data Complex --model MagicGUI_Path --mode all
730
- python run_eval.py --data Instruction --model MagicGUI_Path --mode all
731
- python run_eval.py --data Handling_Exception --model MagicGUI_Path --mode all
732
- # Open-source AndroidControl and GUI-Odyssey
733
- python run_eval.py --data AC-Low --model MagicGUI_Path --mode all
734
- python run_eval.py --data AC-High --model MagicGUI_Path --mode all
735
- python run_eval.py --data GUI-Odyssey --model MagicGUI_Path --mode all
736
- ```
737
-
738
- ## Performance Evaluation
739
-
740
- ### Performance comparison on the Referring Benchmark
741
- <table>
742
- <thead>
743
- <tr>
744
- <th rowspan="1">Agent Models</th>
745
- <th colspan="1">ScreenQA-short</th>
746
- <th colspan="1">ScreenSpot v2 mobile</th>
747
- <th colspan="1">Os-Atlas-mobile</th>
748
- </tr>
749
- </thead>
750
- <tbody>
751
- <!-- Closed-source Models -->
752
- <tr><td colspan="4"><em>Closed-source Models</em></td></tr>
753
- <tr>
754
- <td>GPT-4o (Hurst et al., 2024)</td>
755
- <td>90.3</td><td>10.6</td><td>4.6</td>
756
- </tr>
757
- <tr>
758
- <td>Gemini 2.0 (Pichai et al., 2024)</td>
759
- <td>90.4</td><td>10.6</td><td>5.8</td>
760
- </tr>
761
- <!-- Open-source Models -->
762
- <tr><td colspan="4"><em>Open-source Models</em></td></tr>
763
- <tr>
764
- <td>InternVL-2-8B (Chen et al., 2024)</td>
765
- <td>88.4</td><td>4.2</td><td>2.4</td>
766
- </tr>
767
- <tr>
768
- <td>Qwen2-VL-7B (Wang et al., 2024)</td>
769
- <td>92.6</td><td>70.7</td><td>27.2</td>
770
- </tr>
771
- <tr>
772
- <td>Qwen2.5-VL-7B (Bai et al., 2025)</td>
773
- <td>92.1</td><td>56.1</td><td>26.6</td>
774
- </tr>
775
- <tr>
776
- <td>UI-TARS-7B (Qin et al., 2025)</td>
777
- <td><b>95.4</b></td><td>88.6</td><td>82.5</td>
778
- </tr>
779
- <tr>
780
- <td>UI-TARS-1.5-7B (Seed, 2025)</td>
781
- <td>93.0</td><td>85.8</td><td>79.3</td>
782
- </tr>
783
- <!-- MagicGUI -->
784
- <tr style="background-color:#e8eafc;">
785
- <td>MagicGUI-CPT</td>
786
- <td>94.6</td><td><b>90.2</b></td><td><b>95.2</b></td>
787
- </tr>
788
- </tbody>
789
- </table>
790
-
791
-
792
- ### Performance comparison on the Magic-RICH dataset
793
-
794
- <table>
795
- <thead>
796
- <tr>
797
- <th rowspan="2">Agent Models</th>
798
- <th colspan="3">Routine</th>
799
- <th colspan="3">Instruction</th>
800
- <th colspan="3">Complex</th>
801
- <th rowspan="2">Handing Exception</th>
802
- </tr>
803
- <tr>
804
- <th>Type</th><th>Grd</th><th>SR</th>
805
- <th>Type</th><th>Grd</th><th>SR</th>
806
- <th>Type</th><th>Grd</th><th>SR</th>
807
- </tr>
808
- </thead>
809
- <tbody>
810
- <!-- Closed-source Models -->
811
- <tr><td colspan="11"><em>Closed-source Models</em></td></tr>
812
- <tr>
813
- <td>GPT-4o (Hurst et al., 2024)</td>
814
- <td>49.3</td><td>16.7</td><td>4.6</td>
815
- <td>56.6</td><td>13.5</td><td>19.8</td>
816
- <td>49.0</td><td>14.6</td><td>7.4</td>
817
- <td>85.1</td>
818
- </tr>
819
- <tr>
820
- <td>Gemini 2.0 (Pichai et al., 2024)</td>
821
- <td>89.2</td><td>49.4</td><td>34.7</td>
822
- <td>84.1</td><td>54.2</td><td>51.4</td>
823
- <td>83.3</td><td>50.3</td><td>42.0</td>
824
- <td>73.7</td>
825
- </tr>
826
- <!-- Open-source Models -->
827
- <tr><td colspan="11"><em>Open-source Models</em></td></tr>
828
- <tr>
829
- <td>InternVL-2-8B (Chen et al., 2024)</td>
830
- <td>30.1</td><td>2.8</td><td>1.3</td>
831
- <td>37.1</td><td>4.0</td><td>15.8</td>
832
- <td>17.1</td><td>6.0</td><td>1.3</td>
833
- <td>70.8</td>
834
- </tr>
835
- <tr>
836
- <td>Qwen2-VL-7B (Wang et al., 2024)</td>
837
- <td>71.7</td><td>41.0</td><td>28.1</td>
838
- <td>73.6</td><td>43.9</td><td>41.5</td>
839
- <td>65.6</td><td>28.7</td><td>21.2</td>
840
- <td>68.3</td>
841
- </tr>
842
- <tr>
843
- <td>Qwen2.5-VL-7B (Bai et al., 2025)</td>
844
- <td>94.3</td><td>92.6</td><td>76.3</td>
845
- <td>89.3</td><td><u>95.7</u></td><td>83.6</td>
846
- <td>86.6</td><td>69.6</td><td>60.0</td>
847
- <td>67.0</td>
848
- </tr>
849
- <tr>
850
- <td>UI-TARS-7B (Qin et al., 2025)</td>
851
- <td>83.5</td><td>84.9</td><td>73.3</td>
852
- <td>76.6</td><td>85.6</td><td>69.8</td>
853
- <td>91.4</td><td>69.1</td><td>67.0</td>
854
- <td>3.6</td>
855
- </tr>
856
- <tr>
857
- <td>UI-TARS-1.5-7B (Seed, 2025)</td>
858
- <td>85.6</td><td>96.2</td><td>81.5</td>
859
- <td>78.6</td><td>92.1</td><td>72.2</td>
860
- <td><b>94.7</b></td><td>74.3</td><td>71.1</td>
861
- <td>1.0</td>
862
- </tr>
863
- <tr>
864
- <td>MiMo-VL-7B-SFT (Xiaomi, 2025)</td>
865
- <td>93.0</td><td>77.9</td><td>65.3</td>
866
- <td>89.7</td><td>85.7</td><td>75.4</td>
867
- <td>89.1</td><td>80.1</td><td>71.0</td>
868
- <td>57.0</td>
869
- </tr>
870
- <tr>
871
- <td>AgentCPM-GUI (Zhang et al., 2025)</td>
872
- <td>84.3</td><td>92.2</td><td>75.1</td>
873
- <td>70.4</td><td>80.7</td><td>56.0</td>
874
- <td>72.3</td><td>54.6</td><td>39.4</td>
875
- <td>2.4</td>
876
- </tr>
877
- <!-- MagicGUI -->
878
- <tr style="background-color:#e8eafc;">
879
- <td>MagicGUI-CPT</td>
880
- <td><b>98.5</b></td><td><b>98.5</b></td><td><b>97.2</b></td>
881
- <td><b>95.5</b></td><td><b>96.3</b></td><td><b>92.9</b></td>
882
- <td>88.5</td><td><b>82.3</b></td><td><b>72.9</b></td>
883
- <td><b>93.2</b></td>
884
- </tr>
885
- <tr style="background-color:#e8eafc;">
886
- <td>MagicGUI-RFT</td>
887
- <td><b>99.7</b></td><td>97.5</td><td><b>97.5</b></td>
888
- <td><b>97.2</b></td><td>95.6</td><td><b>94.0</b></td>
889
- <td>92.1</td><td>80.4</td><td><b>74.1</b></td>
890
- <td>92.1</td>
891
- </tr>
892
- </tbody>
893
- </table>
894
-
895
-
896
-
897
-
898
-
899
-
900
-
901
- ### Performance comparison on open-source AndroidControl and GUI-Odyssey datasets.
902
-
903
- <table>
904
- <thead>
905
- <tr>
906
- <th rowspan="2">Agent Models</th>
907
- <th colspan="2">AC-Low</th>
908
- <th colspan="2">AC-High</th>
909
- <th colspan="2">GUI-Odyssey</th>
910
- </tr>
911
- <tr>
912
- <th>Type</th><th>SR</th>
913
- <th>Type</th><th>SR</th>
914
- <th>Type</th><th>SR</th>
915
- </tr>
916
- </thead>
917
- <tbody>
918
- <!-- Closed-source Models -->
919
- <tr><td colspan="7"><em>Closed-source Models</em></td></tr>
920
- <tr>
921
- <td>GPT-4o (Hurst et al., 2024)</td>
922
- <td>-</td><td>19.5</td>
923
- <td>-</td><td>20.8</td>
924
- <td>-</td><td>20.4</td>
925
- </tr>
926
- <tr>
927
- <td>Gemini 2.0 (Pichai et al., 2024)</td>
928
- <td>-</td><td>28.5</td>
929
- <td>-</td><td>60.2</td>
930
- <td>-</td><td>3.3</td>
931
- </tr>
932
- <tr>
933
- <td>Claude 2.0 (Anthropic, 2024)</td>
934
- <td>-</td><td>28.5</td>
935
- <td>-</td><td>12.5</td>
936
- <td>60.9</td><td>-</td>
937
- </tr>
938
- <!-- Open-source Models -->
939
- <tr><td colspan="7"><em>Open-source Models</em></td></tr>
940
- <tr>
941
- <td>Qwen2-VL-7B (Wang et al., 2024)</td>
942
- <td>55.7</td><td>36.2</td>
943
- <td>45.8</td><td>21.2</td>
944
- <td>58.6</td><td>13.3</td>
945
- </tr>
946
- <tr>
947
- <td>Qwen2.5-VL-7B (Bai et al., 2025)</td>
948
- <td>94.1</td><td>85.0</td>
949
- <td>75.1</td><td>62.9</td>
950
- <td>59.5</td><td>46.3</td>
951
- </tr>
952
- <tr>
953
- <td>Aguvis-7B (Xu et al., 2024)</td>
954
- <td>93.9</td><td>89.4</td>
955
- <td>65.6</td><td>54.2</td>
956
- <td>26.7</td><td>13.5</td>
957
- </tr>
958
- <tr>
959
- <td>OS-Atlas-7B (Wu et al., 2024)</td>
960
- <td>73.0</td><td>67.3</td>
961
- <td>70.4</td><td>56.5</td>
962
- <td>91.8*</td><td>76.8*</td>
963
- </tr>
964
- <tr>
965
- <td>UI-TARS-7B (Qin et al., 2025)</td>
966
- <td>95.2</td><td>91.8</td>
967
- <td>81.6</td><td>74.4</td>
968
- <td>86.1</td><td>67.9</td>
969
- </tr>
970
- <tr>
971
- <td>AgentCPM-GUI (Zhang et al., 2025)</td>
972
- <td>94.4</td><td>90.2</td>
973
- <td>77.7</td><td>69.2</td>
974
- <td><b>90.9</b></td><td><b>75.0</b></td>
975
- </tr>
976
- <!-- MagicGUI -->
977
- <tr style="background-color:#e8eafc;">
978
- <td>MagicGUI-CPT</td>
979
- <td>94.5</td><td>86.7</td>
980
- <td>84.6</td><td>73.1</td>
981
- <td><b>90.4</b></td><td>73.5</td>
982
- </tr>
983
- <tr style="background-color:#e8eafc;">
984
- <td>MagicGUI-RFT</td>
985
- <td><b>97.2</b></td><td><b>93.5</b></td>
986
- <td><b>84.7</b></td><td><b>76.3</b></td>
987
- <td>89.7</td><td><b>74.3</b></td>
988
- </tr>
989
- </tbody>
990
- </table>
991
-
992
- ## License
993
-
994
- * This project is licensed under the [Apache-2.0](./LICENSE) license. The model weights are fully open for academic research, and commercial use licenses can be applied for by contacting magicgui@honor.com. This project uses the pre-trained Qwen2VL-7B-Instruct for initialization, which is also licensed under the Apache- 2.0 License.
995
-
996
- ## Citation
997
-
998
- If **MagicGUI** is useful for your research, please cite:
999
-
1000
  ```bibtex
1001
  @misc{tang2025magicguifoundationalmobilegui,
1002
  title={MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning},
 
37
  modelโ€™s robustness and generalization capabilities.
38
 
39
  ## Quick Start
40
+ ### Install dependencies๏ผˆ้œ€่ฆไฟฎๆ”น๏ผ‰
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ```bash
43
  git clone https://github.com/MagicAgent-GUI
 
495
 
496
  If **MagicGUI** is useful for your research, please cite:
497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498
  ```bibtex
499
  @misc{tang2025magicguifoundationalmobilegui,
500
  title={MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning},