File size: 2,903 Bytes
d760a3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# configuration_mixture_of_recursions.py
# Create this file in your repository root
from transformers import PretrainedConfig
class MixtureOfRecursionsConfig(PretrainedConfig):
"""
Configuration class for MixtureOfRecursions model.
This class stores the configuration of a MixtureOfRecursions model with recursive transformers.
"""
model_type = "mixture_of_recursions"
def __init__(
self,
vocab_size=10000,
hidden_size=256,
num_hidden_layers=4,
num_attention_heads=8,
intermediate_size=1024,
max_position_embeddings=512,
max_recursion_depth=3,
attention_dropout=0.1,
hidden_dropout=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
**kwargs
):
"""
Args:
vocab_size (int): Vocabulary size of the model
hidden_size (int): Dimension of the hidden representations
num_hidden_layers (int): Number of transformer layers
num_attention_heads (int): Number of attention heads
intermediate_size (int): Dimension of the feedforward network
max_position_embeddings (int): Maximum sequence length
max_recursion_depth (int): Maximum depth of recursive processing
attention_dropout (float): Dropout probability for attention layers
hidden_dropout (float): Dropout probability for hidden layers
initializer_range (float): Standard deviation for weight initialization
layer_norm_eps (float): Epsilon for layer normalization
use_cache (bool): Whether to use past key values for faster generation
pad_token_id (int): Token ID for padding
bos_token_id (int): Token ID for beginning of sequence
eos_token_id (int): Token ID for end of sequence
tie_word_embeddings (bool): Whether to tie input and output embeddings
"""
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.max_recursion_depth = max_recursion_depth
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache |