Update model_slm.py
Browse files- model_slm.py +0 -607
model_slm.py
CHANGED
|
@@ -604,612 +604,5 @@ def main():
|
|
| 604 |
|
| 605 |
print("\nModel test completed successfully!")
|
| 606 |
|
| 607 |
-
if __name__ == "__main__":
|
| 608 |
-
main()import torch
|
| 609 |
-
import torch.nn as nn
|
| 610 |
-
import torch.nn.functional as F
|
| 611 |
-
import math
|
| 612 |
-
from typing import Optional, Tuple, Union, List
|
| 613 |
-
|
| 614 |
-
# ============================================================================
|
| 615 |
-
# TRANSFORMERS COMPATIBILITY
|
| 616 |
-
# ============================================================================
|
| 617 |
-
from transformers import PretrainedConfig
|
| 618 |
-
from transformers.modeling_utils import PreTrainedModel
|
| 619 |
-
|
| 620 |
-
class MixtureOfRecursionsConfig(PretrainedConfig):
|
| 621 |
-
"""Configuration class for MixtureOfRecursions model."""
|
| 622 |
-
|
| 623 |
-
model_type = "mixture_of_recursions"
|
| 624 |
-
|
| 625 |
-
def __init__(
|
| 626 |
-
self,
|
| 627 |
-
vocab_size=31985,
|
| 628 |
-
d_model=384,
|
| 629 |
-
n_layers=12,
|
| 630 |
-
n_heads=6,
|
| 631 |
-
max_steps=4,
|
| 632 |
-
dim_feedforward=2048,
|
| 633 |
-
dropout=0.1,
|
| 634 |
-
max_seq_len=128,
|
| 635 |
-
router_type="adaptive",
|
| 636 |
-
padding_idx=0,
|
| 637 |
-
pos_encoding="learned",
|
| 638 |
-
hidden_size=None,
|
| 639 |
-
num_hidden_layers=None,
|
| 640 |
-
num_attention_heads=None,
|
| 641 |
-
intermediate_size=None,
|
| 642 |
-
max_position_embeddings=None,
|
| 643 |
-
**kwargs
|
| 644 |
-
):
|
| 645 |
-
super().__init__(**kwargs)
|
| 646 |
-
self.vocab_size = vocab_size
|
| 647 |
-
self.d_model = d_model
|
| 648 |
-
self.n_layers = n_layers
|
| 649 |
-
self.n_heads = n_heads
|
| 650 |
-
self.max_steps = max_steps
|
| 651 |
-
self.dim_feedforward = dim_feedforward
|
| 652 |
-
self.dropout = dropout
|
| 653 |
-
self.max_seq_len = max_seq_len
|
| 654 |
-
self.router_type = router_type
|
| 655 |
-
self.padding_idx = padding_idx
|
| 656 |
-
self.pos_encoding = pos_encoding
|
| 657 |
-
self.hidden_size = hidden_size or d_model
|
| 658 |
-
self.num_hidden_layers = num_hidden_layers or n_layers
|
| 659 |
-
self.num_attention_heads = num_attention_heads or n_heads
|
| 660 |
-
self.intermediate_size = intermediate_size or dim_feedforward
|
| 661 |
-
self.max_position_embeddings = max_position_embeddings or max_seq_len
|
| 662 |
-
|
| 663 |
-
# ============================================================================
|
| 664 |
-
# EMBEDDINGS MODULE (merged from embeddings.py)
|
| 665 |
-
# ============================================================================
|
| 666 |
-
|
| 667 |
-
DEFAULT_BASE = 10000.0
|
| 668 |
-
DEFAULT_CUTOFFS = [2000, 10000]
|
| 669 |
-
DEFAULT_DIV_VAL = 4.0
|
| 670 |
-
|
| 671 |
-
class PositionalEncoding(nn.Module):
|
| 672 |
-
"""Sinusoidal positional encoding for transformer models."""
|
| 673 |
-
|
| 674 |
-
def __init__(self, d_model: int, max_seq_len: int = 512, dropout: float = 0.1):
|
| 675 |
-
super().__init__()
|
| 676 |
-
self.d_model = d_model
|
| 677 |
-
self.dropout = nn.Dropout(dropout)
|
| 678 |
-
pe = torch.zeros(max_seq_len, d_model)
|
| 679 |
-
position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
|
| 680 |
-
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(DEFAULT_BASE) / d_model))
|
| 681 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
| 682 |
-
pe[:, 1::2] = torch.cos(position * div_term[:, :-1] if d_model % 2 == 1 else div_term)
|
| 683 |
-
self.register_buffer('pe', pe.unsqueeze(0))
|
| 684 |
-
|
| 685 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 686 |
-
batch_size, seq_len, d_model = x.size()
|
| 687 |
-
if d_model != self.d_model:
|
| 688 |
-
raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}")
|
| 689 |
-
x = x + self.pe[:, :seq_len]
|
| 690 |
-
return self.dropout(x)
|
| 691 |
-
|
| 692 |
-
class LearnedPositionalEmbedding(nn.Module):
|
| 693 |
-
"""Learned positional embeddings for transformer models."""
|
| 694 |
-
|
| 695 |
-
def __init__(self, max_seq_len: int, d_model: int, dropout: float = 0.1):
|
| 696 |
-
super().__init__()
|
| 697 |
-
self.max_seq_len = max_seq_len
|
| 698 |
-
self.d_model = d_model
|
| 699 |
-
self.pos_embedding = nn.Embedding(max_seq_len, d_model)
|
| 700 |
-
self.dropout = nn.Dropout(dropout)
|
| 701 |
-
nn.init.normal_(self.pos_embedding.weight, std=0.02)
|
| 702 |
-
|
| 703 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 704 |
-
batch_size, seq_len, d_model = x.size()
|
| 705 |
-
if seq_len > self.max_seq_len:
|
| 706 |
-
raise ValueError(f"Sequence length {seq_len} exceeds maximum {self.max_seq_len}")
|
| 707 |
-
if d_model != self.d_model:
|
| 708 |
-
raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}")
|
| 709 |
-
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1)
|
| 710 |
-
pos_emb = self.pos_embedding(positions)
|
| 711 |
-
x = x + pos_emb
|
| 712 |
-
return self.dropout(x)
|
| 713 |
-
|
| 714 |
-
class RotaryPositionalEmbedding(nn.Module):
|
| 715 |
-
"""Rotary Positional Embedding (RoPE) for transformer models."""
|
| 716 |
-
|
| 717 |
-
def __init__(self, d_model: int, max_seq_len: int = 2048, base: float = DEFAULT_BASE):
|
| 718 |
-
super().__init__()
|
| 719 |
-
self.d_model = d_model
|
| 720 |
-
self.max_seq_len = max_seq_len
|
| 721 |
-
self.base = base
|
| 722 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, d_model, 2).float() / d_model))
|
| 723 |
-
self.register_buffer('inv_freq', inv_freq)
|
| 724 |
-
self._seq_len_cached = 0
|
| 725 |
-
self._cos_cached = None
|
| 726 |
-
self._sin_cached = None
|
| 727 |
-
|
| 728 |
-
def _update_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> None:
|
| 729 |
-
if seq_len > self._seq_len_cached:
|
| 730 |
-
self._seq_len_cached = seq_len
|
| 731 |
-
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
| 732 |
-
freqs = torch.outer(t, self.inv_freq)
|
| 733 |
-
self._cos_cached = freqs.cos().to(dtype)
|
| 734 |
-
self._sin_cached = freqs.sin().to(dtype)
|
| 735 |
-
|
| 736 |
-
def _rotate_half(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
|
| 737 |
-
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
| 738 |
-
return torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1)
|
| 739 |
-
|
| 740 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor, start_pos: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 741 |
-
batch_size, seq_len, num_heads, head_dim = q.shape
|
| 742 |
-
self._update_cos_sin_cache(start_pos + seq_len, q.device, q.dtype)
|
| 743 |
-
cos = self._cos_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1)
|
| 744 |
-
sin = self._sin_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1)
|
| 745 |
-
q = q.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
|
| 746 |
-
k = k.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
|
| 747 |
-
q_rot = self._rotate_half(q, cos, sin)
|
| 748 |
-
k_rot = self._rotate_half(k, cos, sin)
|
| 749 |
-
q_rot = q_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
|
| 750 |
-
k_rot = k_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
|
| 751 |
-
return q_rot, k_rot
|
| 752 |
-
|
| 753 |
-
class TechEmbeddingLayer(nn.Module):
|
| 754 |
-
"""Comprehensive embedding layer with token and positional embeddings."""
|
| 755 |
-
|
| 756 |
-
def __init__(
|
| 757 |
-
self,
|
| 758 |
-
vocab_size: int,
|
| 759 |
-
d_model: int,
|
| 760 |
-
max_seq_len: int = 512,
|
| 761 |
-
dropout: float = 0.1,
|
| 762 |
-
padding_idx: int = 0,
|
| 763 |
-
pos_encoding: str = "learned",
|
| 764 |
-
layer_norm: bool = True,
|
| 765 |
-
):
|
| 766 |
-
super().__init__()
|
| 767 |
-
self.d_model = d_model
|
| 768 |
-
self.vocab_size = vocab_size
|
| 769 |
-
self.padding_idx = padding_idx
|
| 770 |
-
self.pos_encoding_type = pos_encoding.lower()
|
| 771 |
-
self.token_embedding = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx)
|
| 772 |
-
|
| 773 |
-
if pos_encoding == "sinusoidal":
|
| 774 |
-
self.pos_encoding = PositionalEncoding(d_model, max_seq_len, dropout)
|
| 775 |
-
elif pos_encoding == "learned":
|
| 776 |
-
self.pos_encoding = LearnedPositionalEmbedding(max_seq_len, d_model, dropout)
|
| 777 |
-
elif pos_encoding == "rope":
|
| 778 |
-
self.pos_encoding = RotaryPositionalEmbedding(d_model, max_seq_len)
|
| 779 |
-
else:
|
| 780 |
-
raise ValueError(f"Unknown positional encoding type: {pos_encoding}")
|
| 781 |
-
|
| 782 |
-
self.layer_norm = nn.LayerNorm(d_model) if layer_norm else nn.Identity()
|
| 783 |
-
self.dropout = nn.Dropout(dropout)
|
| 784 |
-
self._init_weights()
|
| 785 |
-
|
| 786 |
-
def _init_weights(self) -> None:
|
| 787 |
-
nn.init.normal_(self.token_embedding.weight, mean=0.0, std=0.02)
|
| 788 |
-
if self.padding_idx is not None:
|
| 789 |
-
nn.init.constant_(self.token_embedding.weight[self.padding_idx], 0.0)
|
| 790 |
-
|
| 791 |
-
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
|
| 792 |
-
if (input_ids >= self.vocab_size).any():
|
| 793 |
-
raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})")
|
| 794 |
-
embeddings = self.token_embedding(input_ids)
|
| 795 |
-
if self.pos_encoding_type != "rope":
|
| 796 |
-
embeddings = self.pos_encoding(embeddings)
|
| 797 |
-
embeddings = self.layer_norm(embeddings)
|
| 798 |
-
return self.dropout(embeddings)
|
| 799 |
-
|
| 800 |
-
def get_positional_encoding(self) -> Optional[nn.Module]:
|
| 801 |
-
return self.pos_encoding if self.pos_encoding_type == "rope" else None
|
| 802 |
-
|
| 803 |
-
def create_padding_mask(input_ids: torch.Tensor, padding_idx: int = 0) -> torch.Tensor:
|
| 804 |
-
return input_ids == padding_idx
|
| 805 |
-
|
| 806 |
-
def create_causal_mask(seq_len: int, device: torch.device) -> torch.Tensor:
|
| 807 |
-
return torch.triu(torch.ones(seq_len, seq_len, device=device), diagonal=1).bool()
|
| 808 |
-
|
| 809 |
-
# ============================================================================
|
| 810 |
-
# MODEL CONSTANTS
|
| 811 |
-
# ============================================================================
|
| 812 |
-
|
| 813 |
-
DEFAULT_D_MODEL = 512
|
| 814 |
-
DEFAULT_N_HEADS = 8
|
| 815 |
-
DEFAULT_N_LAYERS = 6
|
| 816 |
-
DEFAULT_MAX_STEPS = 4
|
| 817 |
-
DEFAULT_DIM_FEEDFORWARD = 2048
|
| 818 |
-
DEFAULT_DROPOUT = 0.1
|
| 819 |
-
DEFAULT_MAX_SEQ_LEN = 512
|
| 820 |
-
DEFAULT_PADDING_IDX = 0
|
| 821 |
-
DEFAULT_ROUTER_TYPE = "adaptive"
|
| 822 |
-
DEFAULT_VOCAB_SIZE = 10000
|
| 823 |
-
|
| 824 |
-
# ============================================================================
|
| 825 |
-
# MODEL COMPONENTS
|
| 826 |
-
# ============================================================================
|
| 827 |
-
|
| 828 |
-
class MultiHeadAttention(nn.Module):
|
| 829 |
-
"""Multi-head attention mechanism optimized for technical content."""
|
| 830 |
-
|
| 831 |
-
def __init__(self, d_model: int, n_heads: int, dropout: float = DEFAULT_DROPOUT):
|
| 832 |
-
super().__init__()
|
| 833 |
-
if d_model % n_heads != 0:
|
| 834 |
-
raise ValueError(f"d_model ({d_model}) must be divisible by n_heads ({n_heads})")
|
| 835 |
-
self.d_model = d_model
|
| 836 |
-
self.n_heads = n_heads
|
| 837 |
-
self.d_k = d_model // n_heads
|
| 838 |
-
self.w_q = nn.Linear(d_model, d_model, bias=False)
|
| 839 |
-
self.w_k = nn.Linear(d_model, d_model, bias=False)
|
| 840 |
-
self.w_v = nn.Linear(d_model, d_model, bias=False)
|
| 841 |
-
self.w_o = nn.Linear(d_model, d_model)
|
| 842 |
-
self.dropout = nn.Dropout(dropout)
|
| 843 |
-
self._init_weights()
|
| 844 |
-
|
| 845 |
-
def _init_weights(self) -> None:
|
| 846 |
-
for module in [self.w_q, self.w_k, self.w_v, self.w_o]:
|
| 847 |
-
nn.init.xavier_uniform_(module.weight)
|
| 848 |
-
if hasattr(module, 'bias') and module.bias is not None:
|
| 849 |
-
nn.init.zeros_(module.bias)
|
| 850 |
-
|
| 851 |
-
def forward(
|
| 852 |
-
self,
|
| 853 |
-
query: torch.Tensor,
|
| 854 |
-
key: torch.Tensor,
|
| 855 |
-
value: torch.Tensor,
|
| 856 |
-
mask: Optional[torch.Tensor] = None,
|
| 857 |
-
pos_encoding: Optional[nn.Module] = None
|
| 858 |
-
) -> torch.Tensor:
|
| 859 |
-
batch_size, seq_len, _ = query.size()
|
| 860 |
-
Q = self.w_q(query).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
|
| 861 |
-
K = self.w_k(key).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
|
| 862 |
-
V = self.w_v(value).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
|
| 863 |
-
|
| 864 |
-
if pos_encoding is not None:
|
| 865 |
-
Q, K = pos_encoding(Q, K)
|
| 866 |
-
|
| 867 |
-
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
|
| 868 |
-
|
| 869 |
-
if mask is not None:
|
| 870 |
-
mask = mask.unsqueeze(1).expand(batch_size, self.n_heads, seq_len, seq_len)
|
| 871 |
-
scores = scores.masked_fill(mask, float('-inf'))
|
| 872 |
-
|
| 873 |
-
attention_weights = F.softmax(scores, dim=-1)
|
| 874 |
-
attention_weights = self.dropout(attention_weights)
|
| 875 |
-
attended = torch.matmul(attention_weights, V)
|
| 876 |
-
attended = attended.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
|
| 877 |
-
return self.w_o(attended)
|
| 878 |
-
|
| 879 |
-
class FeedForward(nn.Module):
|
| 880 |
-
"""Position-wise feed-forward network with GELU activation."""
|
| 881 |
-
|
| 882 |
-
def __init__(self, d_model: int, dim_feedforward: int, dropout: float = DEFAULT_DROPOUT):
|
| 883 |
-
super().__init__()
|
| 884 |
-
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
| 885 |
-
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
| 886 |
-
self.dropout = nn.Dropout(dropout)
|
| 887 |
-
nn.init.xavier_uniform_(self.linear1.weight)
|
| 888 |
-
nn.init.zeros_(self.linear1.bias)
|
| 889 |
-
nn.init.xavier_uniform_(self.linear2.weight)
|
| 890 |
-
nn.init.zeros_(self.linear2.bias)
|
| 891 |
-
|
| 892 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 893 |
-
x = F.gelu(self.linear1(x))
|
| 894 |
-
x = self.dropout(x)
|
| 895 |
-
return self.linear2(x)
|
| 896 |
-
|
| 897 |
-
class RecursionRouter(nn.Module):
|
| 898 |
-
"""Router to determine recursion steps for technical problem processing."""
|
| 899 |
-
|
| 900 |
-
def __init__(self, d_model: int, max_steps: int = DEFAULT_MAX_STEPS, router_type: str = DEFAULT_ROUTER_TYPE):
|
| 901 |
-
super().__init__()
|
| 902 |
-
self.max_steps = max_steps
|
| 903 |
-
self.router_type = router_type.lower()
|
| 904 |
-
|
| 905 |
-
if self.router_type == "adaptive":
|
| 906 |
-
self.complexity_classifier = nn.Sequential(
|
| 907 |
-
nn.Linear(d_model, d_model // 4),
|
| 908 |
-
nn.GELU(),
|
| 909 |
-
nn.Dropout(DEFAULT_DROPOUT),
|
| 910 |
-
nn.Linear(d_model // 4, max_steps + 1),
|
| 911 |
-
nn.Softmax(dim=-1)
|
| 912 |
-
)
|
| 913 |
-
elif self.router_type == "fixed":
|
| 914 |
-
self.register_buffer('fixed_steps', torch.tensor(max_steps, dtype=torch.long))
|
| 915 |
-
else:
|
| 916 |
-
raise ValueError(f"Invalid router_type: {router_type}. Choose 'adaptive' or 'fixed'.")
|
| 917 |
-
|
| 918 |
-
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, int]:
|
| 919 |
-
if self.router_type == "adaptive":
|
| 920 |
-
seq_repr = x.mean(dim=1)
|
| 921 |
-
step_probs = self.complexity_classifier(seq_repr)
|
| 922 |
-
return torch.argmax(step_probs, dim=-1)
|
| 923 |
-
return self.fixed_steps.item()
|
| 924 |
-
|
| 925 |
-
class RecursiveTransformerLayer(nn.Module):
|
| 926 |
-
"""Transformer layer with recursive computation capability."""
|
| 927 |
-
|
| 928 |
-
def __init__(
|
| 929 |
-
self,
|
| 930 |
-
d_model: int,
|
| 931 |
-
n_heads: int,
|
| 932 |
-
dim_feedforward: int,
|
| 933 |
-
max_steps: int = DEFAULT_MAX_STEPS,
|
| 934 |
-
dropout: float = DEFAULT_DROPOUT,
|
| 935 |
-
router_type: str = DEFAULT_ROUTER_TYPE
|
| 936 |
-
):
|
| 937 |
-
super().__init__()
|
| 938 |
-
self.max_steps = max_steps
|
| 939 |
-
self.d_model = d_model
|
| 940 |
-
self.attention = MultiHeadAttention(d_model, n_heads, dropout)
|
| 941 |
-
self.feedforward = FeedForward(d_model, dim_feedforward, dropout)
|
| 942 |
-
self.norm1 = nn.LayerNorm(d_model)
|
| 943 |
-
self.norm2 = nn.LayerNorm(d_model)
|
| 944 |
-
self.dropout = nn.Dropout(dropout)
|
| 945 |
-
self.router = RecursionRouter(d_model, max_steps, router_type)
|
| 946 |
-
self.step_projections = nn.ModuleList([
|
| 947 |
-
nn.Linear(d_model, d_model) for _ in range(max_steps)
|
| 948 |
-
])
|
| 949 |
-
for proj in self.step_projections:
|
| 950 |
-
nn.init.xavier_uniform_(proj.weight)
|
| 951 |
-
nn.init.zeros_(proj.bias)
|
| 952 |
-
|
| 953 |
-
def forward(
|
| 954 |
-
self,
|
| 955 |
-
x: torch.Tensor,
|
| 956 |
-
mask: Optional[torch.Tensor] = None,
|
| 957 |
-
pos_encoding: Optional[nn.Module] = None
|
| 958 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 959 |
-
steps = self.router(x)
|
| 960 |
-
if isinstance(steps, (int, torch.Tensor)) and not torch.is_tensor(steps):
|
| 961 |
-
return self._recursive_forward_fixed(x, mask, steps, pos_encoding)
|
| 962 |
-
return self._recursive_forward_adaptive(x, mask, steps, pos_encoding)
|
| 963 |
-
|
| 964 |
-
def _recursive_forward_fixed(
|
| 965 |
-
self,
|
| 966 |
-
x: torch.Tensor,
|
| 967 |
-
mask: Optional[torch.Tensor],
|
| 968 |
-
num_steps: int,
|
| 969 |
-
pos_encoding: Optional[nn.Module]
|
| 970 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 971 |
-
device = x.device
|
| 972 |
-
batch_size = x.shape[0]
|
| 973 |
-
computation_loss = torch.tensor(0.0, device=device)
|
| 974 |
-
for step in range(min(num_steps, self.max_steps)):
|
| 975 |
-
step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
|
| 976 |
-
attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
|
| 977 |
-
x = self.norm1(x + self.dropout(attended))
|
| 978 |
-
fed_forward = self.feedforward(x)
|
| 979 |
-
x = self.norm2(x + self.dropout(fed_forward))
|
| 980 |
-
computation_loss += torch.tensor(0.1, device=device) * batch_size
|
| 981 |
-
return x, computation_loss
|
| 982 |
-
|
| 983 |
-
def _recursive_forward_adaptive(
|
| 984 |
-
self,
|
| 985 |
-
x: torch.Tensor,
|
| 986 |
-
mask: Optional[torch.Tensor],
|
| 987 |
-
steps: torch.Tensor,
|
| 988 |
-
pos_encoding: Optional[nn.Module]
|
| 989 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 990 |
-
batch_size, seq_len, d_model = x.shape
|
| 991 |
-
device = x.device
|
| 992 |
-
max_batch_steps = int(steps.max().item())
|
| 993 |
-
computation_loss = torch.tensor(0.0, device=device)
|
| 994 |
-
active_batches = torch.ones(batch_size, device=device, dtype=torch.bool)
|
| 995 |
-
for step in range(min(max_batch_steps, self.max_steps)):
|
| 996 |
-
step_mask = (steps > step) & active_batches
|
| 997 |
-
if not step_mask.any():
|
| 998 |
-
break
|
| 999 |
-
step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
|
| 1000 |
-
attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
|
| 1001 |
-
attended = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), attended, torch.zeros_like(attended))
|
| 1002 |
-
x = self.norm1(x + self.dropout(attended))
|
| 1003 |
-
fed_forward = self.feedforward(x)
|
| 1004 |
-
fed_forward = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), fed_forward, torch.zeros_like(fed_forward))
|
| 1005 |
-
x = self.norm2(x + self.dropout(fed_forward))
|
| 1006 |
-
computation_loss += torch.tensor(0.1, device=device) * step_mask.sum()
|
| 1007 |
-
active_batches &= (steps > step)
|
| 1008 |
-
return x, computation_loss
|
| 1009 |
-
|
| 1010 |
-
class MixtureOfRecursions(nn.Module):
|
| 1011 |
-
"""Transformer model with mixture of recursive layers for technical content."""
|
| 1012 |
-
|
| 1013 |
-
def __init__(
|
| 1014 |
-
self,
|
| 1015 |
-
vocab_size: int,
|
| 1016 |
-
d_model: int = DEFAULT_D_MODEL,
|
| 1017 |
-
n_layers: int = DEFAULT_N_LAYERS,
|
| 1018 |
-
n_heads: int = DEFAULT_N_HEADS,
|
| 1019 |
-
max_steps: int = DEFAULT_MAX_STEPS,
|
| 1020 |
-
dim_feedforward: int = DEFAULT_DIM_FEEDFORWARD,
|
| 1021 |
-
dropout: float = DEFAULT_DROPOUT,
|
| 1022 |
-
max_seq_len: int = DEFAULT_MAX_SEQ_LEN,
|
| 1023 |
-
router_type: str = DEFAULT_ROUTER_TYPE,
|
| 1024 |
-
padding_idx: int = DEFAULT_PADDING_IDX,
|
| 1025 |
-
pos_encoding: str = "learned"
|
| 1026 |
-
):
|
| 1027 |
-
super().__init__()
|
| 1028 |
-
self.d_model = d_model
|
| 1029 |
-
self.vocab_size = vocab_size
|
| 1030 |
-
self.padding_idx = padding_idx
|
| 1031 |
-
self.embeddings = TechEmbeddingLayer(
|
| 1032 |
-
vocab_size=vocab_size,
|
| 1033 |
-
d_model=d_model,
|
| 1034 |
-
max_seq_len=max_seq_len,
|
| 1035 |
-
dropout=dropout,
|
| 1036 |
-
padding_idx=padding_idx,
|
| 1037 |
-
pos_encoding=pos_encoding
|
| 1038 |
-
)
|
| 1039 |
-
self.layers = nn.ModuleList([
|
| 1040 |
-
RecursiveTransformerLayer(
|
| 1041 |
-
d_model=d_model,
|
| 1042 |
-
n_heads=n_heads,
|
| 1043 |
-
dim_feedforward=dim_feedforward,
|
| 1044 |
-
max_steps=max_steps,
|
| 1045 |
-
dropout=dropout,
|
| 1046 |
-
router_type=router_type
|
| 1047 |
-
) for _ in range(n_layers)
|
| 1048 |
-
])
|
| 1049 |
-
self.final_norm = nn.LayerNorm(d_model)
|
| 1050 |
-
self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
|
| 1051 |
-
self._init_weights()
|
| 1052 |
-
|
| 1053 |
-
def _init_weights(self) -> None:
|
| 1054 |
-
nn.init.xavier_uniform_(self.lm_head.weight)
|
| 1055 |
-
|
| 1056 |
-
def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 1057 |
-
batch_size, seq_len = input_ids.shape
|
| 1058 |
-
padding_mask = create_padding_mask(input_ids, self.padding_idx) if attention_mask is None else (attention_mask == 0)
|
| 1059 |
-
causal_mask = create_causal_mask(seq_len, input_ids.device)
|
| 1060 |
-
combined_mask = padding_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len) | causal_mask.unsqueeze(0)
|
| 1061 |
-
x = self.embeddings(input_ids)
|
| 1062 |
-
pos_encoding = self.embeddings.get_positional_encoding()
|
| 1063 |
-
total_computation_loss = torch.tensor(0.0, device=x.device)
|
| 1064 |
-
for layer in self.layers:
|
| 1065 |
-
x, comp_loss = layer(x, combined_mask, pos_encoding)
|
| 1066 |
-
total_computation_loss += comp_loss
|
| 1067 |
-
x = self.final_norm(x)
|
| 1068 |
-
logits = self.lm_head(x)
|
| 1069 |
-
return logits, total_computation_loss
|
| 1070 |
-
|
| 1071 |
-
def generate_step(
|
| 1072 |
-
self,
|
| 1073 |
-
input_ids: torch.Tensor,
|
| 1074 |
-
temperature: float = 1.0,
|
| 1075 |
-
top_k: Optional[int] = None,
|
| 1076 |
-
top_p: Optional[float] = None
|
| 1077 |
-
) -> torch.Tensor:
|
| 1078 |
-
self.eval()
|
| 1079 |
-
with torch.no_grad():
|
| 1080 |
-
logits, _ = self.forward(input_ids)
|
| 1081 |
-
last_logits = logits[:, -1, :] / temperature
|
| 1082 |
-
if top_k is not None:
|
| 1083 |
-
indices_to_remove = last_logits < torch.topk(last_logits, top_k)[0][..., -1, None]
|
| 1084 |
-
last_logits = last_logits.masked_fill(indices_to_remove, float('-inf'))
|
| 1085 |
-
if top_p is not None:
|
| 1086 |
-
sorted_logits, sorted_indices = torch.sort(last_logits, descending=True)
|
| 1087 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 1088 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
| 1089 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 1090 |
-
sorted_indices_to_remove[..., 0] = False
|
| 1091 |
-
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 1092 |
-
last_logits = last_logits.masked_fill(indices_to_remove, float('-inf'))
|
| 1093 |
-
probs = F.softmax(last_logits, dim=-1)
|
| 1094 |
-
return torch.multinomial(probs, num_samples=1)
|
| 1095 |
-
|
| 1096 |
-
class TextGenerator:
|
| 1097 |
-
"""Text generation utility for the MixtureOfRecursions model."""
|
| 1098 |
-
|
| 1099 |
-
def __init__(self, model: nn.Module, tokenizer: 'Tokenizer', max_length: int = DEFAULT_MAX_SEQ_LEN, device: Optional[torch.device] = None):
|
| 1100 |
-
self.model = model
|
| 1101 |
-
self.tokenizer = tokenizer
|
| 1102 |
-
self.max_length = max_length
|
| 1103 |
-
self.device = device if device else next(model.parameters()).device
|
| 1104 |
-
self.model.to(self.device)
|
| 1105 |
-
self.eos_token_id = tokenizer.vocab.get('<|endoftext|>', -1)
|
| 1106 |
-
self.assistant_token_id = tokenizer.vocab.get('<|assistant|>', -1)
|
| 1107 |
-
|
| 1108 |
-
def generate(
|
| 1109 |
-
self,
|
| 1110 |
-
prompt: str,
|
| 1111 |
-
method: str = "nucleus",
|
| 1112 |
-
temperature: float = 1.0,
|
| 1113 |
-
top_k: Optional[int] = 50,
|
| 1114 |
-
top_p: Optional[float] = 0.9,
|
| 1115 |
-
max_new_tokens: Optional[int] = None
|
| 1116 |
-
) -> str:
|
| 1117 |
-
max_new_tokens = max_new_tokens or self.max_length
|
| 1118 |
-
input_text = f"<|user|> {prompt}"
|
| 1119 |
-
input_ids = self.tokenizer.encode_ids(input_text, add_special_tokens=True)
|
| 1120 |
-
input_tensor = torch.tensor([input_ids], device=self.device)
|
| 1121 |
-
self.model.eval()
|
| 1122 |
-
generated_ids = []
|
| 1123 |
-
with torch.no_grad():
|
| 1124 |
-
for _ in range(max_new_tokens):
|
| 1125 |
-
if input_tensor.size(1) > self.max_length:
|
| 1126 |
-
input_tensor = input_tensor[:, -self.max_length:]
|
| 1127 |
-
if method == "greedy":
|
| 1128 |
-
next_token = self._greedy_generate(input_tensor)
|
| 1129 |
-
elif method == "sample":
|
| 1130 |
-
next_token = self._sample_generate(input_tensor, temperature)
|
| 1131 |
-
elif method == "top_k":
|
| 1132 |
-
next_token = self._top_k_generate(input_tensor, temperature, top_k)
|
| 1133 |
-
elif method == "nucleus" or method == "top_p":
|
| 1134 |
-
next_token = self._nucleus_generate(input_tensor, temperature, top_p)
|
| 1135 |
-
else:
|
| 1136 |
-
raise ValueError(f"Unknown generation method: {method}")
|
| 1137 |
-
next_token_id = next_token.item()
|
| 1138 |
-
generated_ids.append(next_token_id)
|
| 1139 |
-
input_tensor = torch.cat([input_tensor, next_token.unsqueeze(0)], dim=1)
|
| 1140 |
-
if next_token_id == self.eos_token_id or (self.assistant_token_id != -1 and next_token_id == self.assistant_token_id):
|
| 1141 |
-
break
|
| 1142 |
-
full_ids = input_ids + generated_ids
|
| 1143 |
-
full_text = self.tokenizer.decode_ids(full_ids, skip_special_tokens=False)
|
| 1144 |
-
if "<|assistant|>" in full_text:
|
| 1145 |
-
response = full_text.split("<|assistant|>")[-1].split("<|endoftext|>")[0].strip()
|
| 1146 |
-
else:
|
| 1147 |
-
response = full_text.split("<|endoftext|>")[0].strip()
|
| 1148 |
-
return response if response else "No response generated."
|
| 1149 |
-
|
| 1150 |
-
def _greedy_generate(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
| 1151 |
-
logits, _ = self.model(input_tensor)
|
| 1152 |
-
return torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)
|
| 1153 |
-
|
| 1154 |
-
def _sample_generate(self, input_tensor: torch.Tensor, temperature: float) -> torch.Tensor:
|
| 1155 |
-
logits, _ = self.model(input_tensor)
|
| 1156 |
-
logits = logits[:, -1, :] / temperature
|
| 1157 |
-
probs = F.softmax(logits, dim=-1)
|
| 1158 |
-
return torch.multinomial(probs, num_samples=1)
|
| 1159 |
-
|
| 1160 |
-
def _top_k_generate(self, input_tensor: torch.Tensor, temperature: float, top_k: int) -> torch.Tensor:
|
| 1161 |
-
logits, _ = self.model(input_tensor)
|
| 1162 |
-
logits = logits[:, -1, :] / temperature
|
| 1163 |
-
top_k_logits, top_k_indices = torch.topk(logits, top_k)
|
| 1164 |
-
probs = F.softmax(top_k_logits, dim=-1)
|
| 1165 |
-
next_token_idx = torch.multinomial(probs, num_samples=1)
|
| 1166 |
-
return top_k_indices.gather(-1, next_token_idx)
|
| 1167 |
-
|
| 1168 |
-
def _nucleus_generate(self, input_tensor: torch.Tensor, temperature: float, top_p: float) -> torch.Tensor:
|
| 1169 |
-
return self.model.generate_step(input_tensor, temperature, top_p=top_p)
|
| 1170 |
-
|
| 1171 |
-
def count_parameters(model: nn.Module) -> Tuple[int, int]:
|
| 1172 |
-
total_params = sum(p.numel() for p in model.parameters())
|
| 1173 |
-
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 1174 |
-
return total_params, trainable_params
|
| 1175 |
-
|
| 1176 |
-
def main():
|
| 1177 |
-
"""Test the MixtureOfRecursions model and its components."""
|
| 1178 |
-
print("Initializing MixtureOfRecursions model...")
|
| 1179 |
-
model = MixtureOfRecursions(
|
| 1180 |
-
vocab_size=DEFAULT_VOCAB_SIZE,
|
| 1181 |
-
d_model=DEFAULT_D_MODEL,
|
| 1182 |
-
n_layers=DEFAULT_N_LAYERS,
|
| 1183 |
-
n_heads=DEFAULT_N_HEADS,
|
| 1184 |
-
max_steps=DEFAULT_MAX_STEPS,
|
| 1185 |
-
dim_feedforward=DEFAULT_DIM_FEEDFORWARD,
|
| 1186 |
-
dropout=DEFAULT_DROPOUT,
|
| 1187 |
-
router_type=DEFAULT_ROUTER_TYPE
|
| 1188 |
-
)
|
| 1189 |
-
|
| 1190 |
-
total_params, trainable_params = count_parameters(model)
|
| 1191 |
-
print(f"Total parameters: {total_params:,}")
|
| 1192 |
-
print(f"Trainable parameters: {trainable_params:,}")
|
| 1193 |
-
|
| 1194 |
-
print("\nTesting forward pass...")
|
| 1195 |
-
batch_size, seq_len = 4, 128
|
| 1196 |
-
input_ids = torch.randint(0, DEFAULT_VOCAB_SIZE, (batch_size, seq_len))
|
| 1197 |
-
attention_mask = torch.ones_like(input_ids)
|
| 1198 |
-
attention_mask[:, -10:] = 0
|
| 1199 |
-
|
| 1200 |
-
logits, comp_loss = model(input_ids, attention_mask)
|
| 1201 |
-
|
| 1202 |
-
assert logits.shape == (batch_size, seq_len, DEFAULT_VOCAB_SIZE), f"Unexpected logits shape: {logits.shape}"
|
| 1203 |
-
print(f"Input shape: {input_ids.shape}")
|
| 1204 |
-
print(f"Output logits shape: {logits.shape}")
|
| 1205 |
-
print(f"Expected logits shape: ({batch_size}, {seq_len}, {DEFAULT_VOCAB_SIZE})")
|
| 1206 |
-
print(f"Computation loss: {comp_loss:.4f}")
|
| 1207 |
-
|
| 1208 |
-
print("\nTesting generation step...")
|
| 1209 |
-
next_token = model.generate_step(input_ids[:1], temperature=0.8, top_p=0.9)
|
| 1210 |
-
print(f"Generated next token: {next_token.item()}")
|
| 1211 |
-
|
| 1212 |
-
print("\nModel test completed successfully!")
|
| 1213 |
-
|
| 1214 |
if __name__ == "__main__":
|
| 1215 |
main()
|
|
|
|
| 604 |
|
| 605 |
print("\nModel test completed successfully!")
|
| 606 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
if __name__ == "__main__":
|
| 608 |
main()
|