Update train.py
Browse files
train.py
CHANGED
|
@@ -10,197 +10,389 @@ import argparse
|
|
| 10 |
import time
|
| 11 |
import math
|
| 12 |
import glob
|
| 13 |
-
from typing import Dict, List
|
| 14 |
from tqdm import tqdm
|
| 15 |
import numpy as np
|
| 16 |
import gc
|
|
|
|
| 17 |
from collections import defaultdict
|
| 18 |
import multiprocessing
|
|
|
|
| 19 |
# Import custom modules
|
| 20 |
try:
|
| 21 |
from model_slm import MixtureOfRecursions, count_parameters, TextGenerator
|
| 22 |
from custom_tokenizer import TechnicalTokenizer
|
| 23 |
except ImportError as e:
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
class FastTechnicalTextDataset(Dataset):
|
| 27 |
-
"""
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
self.tokenizer = tokenizer
|
| 30 |
self.max_length = max_length
|
| 31 |
self.pad_token_id = tokenizer.vocab.get('<pad>', 0)
|
| 32 |
-
self.max_examples = max_examples
|
| 33 |
-
print(f"FAST DATASET LOADING")
|
| 34 |
-
print(f"Data file: {data_file}")
|
| 35 |
-
print(f"Max sequence length: {max_length}")
|
| 36 |
-
print(f"Max examples: {max_examples}")
|
| 37 |
-
start_time = time.time()
|
| 38 |
self.examples = []
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
self._tensorize_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
gc.collect()
|
| 44 |
-
|
| 45 |
-
def _fast_load_data(self, data_file: str):
|
| 46 |
-
|
|
|
|
| 47 |
with open(data_file, 'r', encoding='utf-8') as f:
|
| 48 |
-
lines = f.readlines()
|
| 49 |
-
|
|
|
|
| 50 |
good_examples = []
|
| 51 |
-
seen_hashes = set()
|
|
|
|
| 52 |
for line in lines[:self.max_examples * 3]:
|
| 53 |
line = line.strip()
|
| 54 |
-
if (
|
|
|
|
| 55 |
line.count(' ') >= 8 and
|
| 56 |
not line.lower().startswith(('http', 'www', 'ftp')) and
|
| 57 |
-
line.count('.') <= len(line) * 0.1
|
|
|
|
| 58 |
line_hash = hash(line[:100])
|
| 59 |
if line_hash not in seen_hashes:
|
| 60 |
seen_hashes.add(line_hash)
|
| 61 |
good_examples.append(line)
|
| 62 |
if len(good_examples) >= self.max_examples:
|
| 63 |
-
break
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
batch_size = 1000
|
| 66 |
for i in range(0, len(good_examples), batch_size):
|
| 67 |
-
batch = good_examples[i:i+batch_size]
|
| 68 |
for line in batch:
|
| 69 |
try:
|
| 70 |
if not line.endswith('<|endoftext|>'):
|
| 71 |
-
line += ' <|endoftext|>'
|
| 72 |
tokens = self.tokenizer.encode_ids(line, add_special_tokens=True)
|
| 73 |
if 30 <= len(tokens) <= self.max_length:
|
| 74 |
if len(tokens) < self.max_length:
|
| 75 |
-
tokens
|
| 76 |
self.examples.append(tokens)
|
| 77 |
-
except:
|
|
|
|
| 78 |
continue
|
| 79 |
if i % 5000 == 0:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
tensorized_examples = []
|
|
|
|
| 86 |
for tokens in self.examples:
|
| 87 |
-
if len(tokens)
|
| 88 |
-
continue
|
| 89 |
input_ids = torch.tensor(tokens[:-1], dtype=torch.long)
|
| 90 |
-
targets = torch.tensor(tokens[1:], dtype=torch.long)
|
| 91 |
original_len = next((i for i, x in enumerate(tokens) if x == self.pad_token_id), self.max_length)
|
| 92 |
mask_len = min(original_len, seq_len)
|
| 93 |
attention_mask = torch.zeros(seq_len, dtype=torch.long)
|
| 94 |
-
attention_mask[:mask_len] = 1
|
| 95 |
tensorized_examples.append({
|
| 96 |
'input_ids': input_ids,
|
| 97 |
'targets': targets,
|
| 98 |
'attention_mask': attention_mask
|
| 99 |
})
|
|
|
|
| 100 |
self.examples = tensorized_examples
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
return self.examples[idx]
|
|
|
|
| 106 |
class FastCosineScheduler:
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
self.optimizer = optimizer
|
| 109 |
self.total_steps = total_steps
|
| 110 |
self.warmup_steps = int(total_steps * warmup_ratio)
|
| 111 |
self.base_lr = optimizer.param_groups[0]['lr']
|
| 112 |
-
self.step_count = 0
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
self.step_count += 1
|
| 115 |
if self.step_count <= self.warmup_steps:
|
| 116 |
lr = self.base_lr * self.step_count / self.warmup_steps
|
| 117 |
else:
|
| 118 |
progress = (self.step_count - self.warmup_steps) / (self.total_steps - self.warmup_steps)
|
| 119 |
lr = self.base_lr * 0.5 * (1 + math.cos(math.pi * progress))
|
|
|
|
| 120 |
for param_group in self.optimizer.param_groups:
|
| 121 |
param_group['lr'] = lr
|
| 122 |
return lr
|
|
|
|
| 123 |
class UltraFastTrainer:
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
self.model = model
|
| 126 |
self.tokenizer = tokenizer
|
| 127 |
self.train_dataset = train_dataset
|
| 128 |
self.val_dataset = val_dataset
|
| 129 |
-
self.config = config or {}
|
| 130 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 131 |
-
self.model.to(self.device)
|
|
|
|
|
|
|
| 132 |
self._fast_init_weights()
|
| 133 |
-
self._setup_fast_optimizer()
|
| 134 |
-
|
| 135 |
-
|
|
|
|
| 136 |
total_steps = len(train_dataset) // batch_size * epochs
|
| 137 |
self.scheduler = FastCosineScheduler(self.optimizer, total_steps)
|
| 138 |
-
self.scaler = GradScaler()
|
| 139 |
self.global_step = 0
|
| 140 |
self.best_loss = float('inf')
|
| 141 |
-
self.grad_accum_steps = self.config.get('gradient_accumulation_steps',
|
| 142 |
-
self.eval_every = self.config.get('eval_every',
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
if isinstance(module, nn.Linear):
|
| 146 |
nn.init.normal_(module.weight, std=0.02)
|
| 147 |
if module.bias is not None:
|
| 148 |
nn.init.zeros_(module.bias)
|
| 149 |
elif isinstance(module, nn.Embedding):
|
| 150 |
nn.init.normal_(module.weight, std=0.02)
|
| 151 |
-
self.model.apply(fast_init)
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
| 154 |
params = [p for p in self.model.parameters() if p.requires_grad]
|
| 155 |
-
self.optimizer = optim.AdamW(params, lr=lr, betas=(0.9, 0.99), weight_decay=0.01, eps=1e-6)
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
logits_flat = logits.view(-1, logits.size(-1))
|
| 158 |
targets_flat = targets.view(-1)
|
| 159 |
mask_flat = mask.view(-1).bool()
|
|
|
|
| 160 |
if not mask_flat.any():
|
| 161 |
return torch.tensor(0.0, device=logits.device, requires_grad=True)
|
| 162 |
-
|
| 163 |
-
return
|
|
|
|
| 164 |
def train_epoch_fast(self, epoch: int, dataloader: DataLoader) -> Dict[str, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
self.model.train()
|
| 166 |
total_loss = 0
|
| 167 |
num_batches = 0
|
| 168 |
-
start_time = time.time()
|
|
|
|
| 169 |
progress_bar = tqdm(dataloader, desc=f"Epoch {epoch}", leave=False, miniters=50)
|
| 170 |
for batch_idx, batch in enumerate(progress_bar):
|
| 171 |
input_ids = batch['input_ids'].to(self.device, non_blocking=True)
|
| 172 |
targets = batch['targets'].to(self.device, non_blocking=True)
|
| 173 |
-
mask = batch['attention_mask'].to(self.device, non_blocking=True)
|
| 174 |
-
|
|
|
|
| 175 |
logits, comp_loss = self.model(input_ids, mask)
|
| 176 |
lm_loss = self.compute_fast_loss(logits, targets, mask)
|
| 177 |
total_loss_step = lm_loss + 0.0001 * comp_loss
|
| 178 |
if self.grad_accum_steps > 1:
|
| 179 |
-
total_loss_step = total_loss_step / self.grad_accum_steps
|
| 180 |
-
|
| 181 |
-
if
|
| 182 |
-
self.scaler.
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
total_loss += lm_loss.item()
|
| 190 |
num_batches += 1
|
|
|
|
| 191 |
if batch_idx % 100 == 0:
|
| 192 |
current_loss = total_loss / num_batches
|
| 193 |
progress_bar.set_postfix({'loss': f"{current_loss:.3f}", 'ppl': f"{math.exp(min(current_loss, 10)):.1f}"})
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
| 197 |
avg_loss = total_loss / max(num_batches, 1)
|
| 198 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
def validate_fast(self, dataloader: DataLoader) -> Dict[str, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
self.model.eval()
|
| 201 |
total_loss = 0
|
| 202 |
num_batches = 0
|
| 203 |
-
max_val_batches = min(100, len(dataloader))
|
|
|
|
| 204 |
with torch.no_grad():
|
| 205 |
for batch_idx, batch in enumerate(dataloader):
|
| 206 |
if batch_idx >= max_val_batches:
|
|
@@ -208,16 +400,32 @@ class UltraFastTrainer:
|
|
| 208 |
input_ids = batch['input_ids'].to(self.device, non_blocking=True)
|
| 209 |
targets = batch['targets'].to(self.device, non_blocking=True)
|
| 210 |
mask = batch['attention_mask'].to(self.device, non_blocking=True)
|
| 211 |
-
|
|
|
|
| 212 |
logits, _ = self.model(input_ids, mask)
|
| 213 |
loss = self.compute_fast_loss(logits, targets, mask)
|
|
|
|
| 214 |
total_loss += loss.item()
|
| 215 |
-
num_batches += 1
|
|
|
|
| 216 |
avg_loss = total_loss / max(num_batches, 1)
|
| 217 |
-
return {'loss': avg_loss, 'perplexity': math.exp(min(avg_loss, 10))}
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
os.makedirs(save_dir, exist_ok=True)
|
| 220 |
val_loss = metrics.get('val_loss', metrics.get('loss', float('inf')))
|
|
|
|
| 221 |
if val_loss < self.best_loss:
|
| 222 |
self.best_loss = val_loss
|
| 223 |
checkpoint = {
|
|
@@ -225,159 +433,211 @@ class UltraFastTrainer:
|
|
| 225 |
'model_state_dict': self.model.state_dict(),
|
| 226 |
'optimizer_state_dict': self.optimizer.state_dict(),
|
| 227 |
'metrics': metrics,
|
| 228 |
-
'scaler_state_dict': self.scaler.state_dict()
|
| 229 |
}
|
| 230 |
best_path = os.path.join(save_dir, "best_model.pt")
|
| 231 |
torch.save(checkpoint, best_path)
|
| 232 |
-
|
| 233 |
return best_path
|
| 234 |
-
return None
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
train_loader = DataLoader(
|
| 243 |
self.train_dataset,
|
| 244 |
batch_size=batch_size,
|
| 245 |
shuffle=True,
|
| 246 |
-
num_workers=4,
|
| 247 |
-
pin_memory=
|
| 248 |
persistent_workers=True,
|
| 249 |
drop_last=True
|
| 250 |
-
)
|
|
|
|
| 251 |
val_loader = None
|
| 252 |
if self.val_dataset:
|
| 253 |
val_loader = DataLoader(
|
| 254 |
self.val_dataset,
|
| 255 |
batch_size=batch_size * 2,
|
| 256 |
shuffle=False,
|
| 257 |
-
num_workers=2,
|
| 258 |
-
pin_memory=
|
| 259 |
-
)
|
|
|
|
| 260 |
total_start_time = time.time()
|
| 261 |
-
history = []
|
|
|
|
| 262 |
for epoch in range(1, num_epochs + 1):
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
val_metrics = {}
|
| 267 |
if val_loader and (epoch % 2 == 0 or epoch == num_epochs):
|
| 268 |
-
val_metrics = self.validate_fast(val_loader)
|
| 269 |
-
|
|
|
|
| 270 |
epoch_info = {
|
| 271 |
'epoch': epoch,
|
| 272 |
'train_loss': train_metrics['loss'],
|
| 273 |
'train_ppl': train_metrics['perplexity'],
|
| 274 |
-
'epoch_time_min':
|
| 275 |
}
|
| 276 |
if val_metrics:
|
| 277 |
epoch_info.update({'val_loss': val_metrics['loss'], 'val_ppl': val_metrics['perplexity']})
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
elapsed_hours = (time.time() - total_start_time) / 3600
|
| 280 |
-
remaining_hours = elapsed_hours * (num_epochs - epoch) / epoch
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
| 287 |
if val_metrics:
|
| 288 |
-
|
| 289 |
-
|
|
|
|
| 290 |
current_loss = val_metrics.get('loss', train_metrics['loss'])
|
| 291 |
current_ppl = val_metrics.get('perplexity', train_metrics['perplexity'])
|
| 292 |
if current_loss < 2.0 and current_ppl < 12:
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
print(f" PPL: {current_ppl:.1f} < 12")
|
| 296 |
combined_metrics = {**train_metrics}
|
| 297 |
if val_metrics:
|
| 298 |
combined_metrics.update({f"val_{k}": v for k, v in val_metrics.items()})
|
| 299 |
-
self.save_checkpoint_fast(epoch, combined_metrics)
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
| 302 |
if current_loss < 1.8 and current_ppl < 10:
|
| 303 |
-
|
| 304 |
-
break
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
return history
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
parser.
|
| 319 |
-
parser.add_argument("--
|
| 320 |
-
parser.add_argument("--
|
| 321 |
-
parser.add_argument("--
|
| 322 |
-
parser.add_argument("--
|
| 323 |
-
parser.add_argument("--
|
| 324 |
-
parser.add_argument("--
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
torch.manual_seed(42)
|
| 327 |
-
np.random.seed(42)
|
| 328 |
-
|
| 329 |
-
|
|
|
|
| 330 |
if args.train_file is None:
|
| 331 |
patterns = ["*train*.txt", "*_train.txt"]
|
| 332 |
files = []
|
| 333 |
for pattern in patterns:
|
| 334 |
files.extend(glob.glob(pattern))
|
| 335 |
-
files.extend(glob.glob(
|
| 336 |
-
files.extend(glob.glob(
|
| 337 |
if files:
|
| 338 |
args.train_file = files[0]
|
| 339 |
-
|
| 340 |
else:
|
| 341 |
-
|
| 342 |
-
return 1
|
| 343 |
-
|
| 344 |
try:
|
|
|
|
| 345 |
tokenizer.load(args.tokenizer_dir)
|
| 346 |
-
|
| 347 |
except Exception as e:
|
| 348 |
-
|
| 349 |
-
return 1
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
val_dataset = None
|
| 355 |
if args.val_file and os.path.exists(args.val_file):
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
config = {
|
| 368 |
'learning_rate': args.learning_rate,
|
| 369 |
'gradient_accumulation_steps': args.gradient_accumulation_steps,
|
| 370 |
'eval_every': args.eval_every,
|
| 371 |
'batch_size': args.batch_size,
|
| 372 |
'epochs': args.epochs
|
| 373 |
-
}
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
if __name__ == "__main__":
|
| 383 |
exit(run_ultra_fast_training())
|
|
|
|
| 10 |
import time
|
| 11 |
import math
|
| 12 |
import glob
|
| 13 |
+
from typing import Dict, List, Optional
|
| 14 |
from tqdm import tqdm
|
| 15 |
import numpy as np
|
| 16 |
import gc
|
| 17 |
+
import logging
|
| 18 |
from collections import defaultdict
|
| 19 |
import multiprocessing
|
| 20 |
+
|
| 21 |
# Import custom modules
|
| 22 |
try:
|
| 23 |
from model_slm import MixtureOfRecursions, count_parameters, TextGenerator
|
| 24 |
from custom_tokenizer import TechnicalTokenizer
|
| 25 |
except ImportError as e:
|
| 26 |
+
raise ImportError(f"Failed to import custom modules: {e}")
|
| 27 |
+
|
| 28 |
+
# Constants for configuration
|
| 29 |
+
DEFAULT_MAX_LENGTH = 128
|
| 30 |
+
DEFAULT_MAX_EXAMPLES = 50000
|
| 31 |
+
DEFAULT_D_MODEL = 384
|
| 32 |
+
DEFAULT_N_LAYERS = 6
|
| 33 |
+
DEFAULT_N_HEADS = 6
|
| 34 |
+
DEFAULT_EPOCHS = 15
|
| 35 |
+
DEFAULT_BATCH_SIZE = 16
|
| 36 |
+
DEFAULT_LEARNING_RATE = 5e-4
|
| 37 |
+
DEFAULT_GRAD_ACCUM_STEPS = 1
|
| 38 |
+
DEFAULT_EVAL_EVERY = 500
|
| 39 |
+
DEFAULT_WARMUP_RATIO = 0.05
|
| 40 |
+
DEFAULT_CHECKPOINT_DIR = "checkpoints"
|
| 41 |
+
DEFAULT_LOG_LEVEL = "INFO"
|
| 42 |
+
|
| 43 |
+
# Set up logging
|
| 44 |
+
logging.basicConfig(
|
| 45 |
+
level=DEFAULT_LOG_LEVEL,
|
| 46 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 47 |
+
handlers=[
|
| 48 |
+
logging.StreamHandler(),
|
| 49 |
+
logging.FileHandler("training.log")
|
| 50 |
+
]
|
| 51 |
+
)
|
| 52 |
+
logger = logging.getLogger(__name__)
|
| 53 |
+
|
| 54 |
class FastTechnicalTextDataset(Dataset):
|
| 55 |
+
"""Optimized dataset for fast loading and processing of technical text."""
|
| 56 |
+
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
data_file: str,
|
| 60 |
+
tokenizer: TechnicalTokenizer,
|
| 61 |
+
max_length: int = DEFAULT_MAX_LENGTH,
|
| 62 |
+
max_examples: int = DEFAULT_MAX_EXAMPLES
|
| 63 |
+
):
|
| 64 |
+
"""
|
| 65 |
+
Initialize the dataset with optimized loading.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
data_file (str): Path to the training data file.
|
| 69 |
+
tokenizer (TechnicalTokenizer): Tokenizer for encoding text.
|
| 70 |
+
max_length (int): Maximum sequence length.
|
| 71 |
+
max_examples (int): Maximum number of examples to load.
|
| 72 |
+
|
| 73 |
+
Raises:
|
| 74 |
+
FileNotFoundError: If the data file does not exist.
|
| 75 |
+
ValueError: If max_length or max_examples is invalid.
|
| 76 |
+
"""
|
| 77 |
+
if not os.path.exists(data_file):
|
| 78 |
+
raise FileNotFoundError(f"Data file not found: {data_file}")
|
| 79 |
+
if max_length <= 0 or max_examples <= 0:
|
| 80 |
+
raise ValueError("max_length and max_examples must be positive")
|
| 81 |
+
|
| 82 |
self.tokenizer = tokenizer
|
| 83 |
self.max_length = max_length
|
| 84 |
self.pad_token_id = tokenizer.vocab.get('<pad>', 0)
|
| 85 |
+
self.max_examples = max_examples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
self.examples = []
|
| 87 |
+
|
| 88 |
+
logger.info(f"Loading dataset from {data_file} with max_length={max_length}, max_examples={max_examples}")
|
| 89 |
+
start_time = time.time()
|
| 90 |
+
self._fast_load_data(data_file)
|
| 91 |
self._tensorize_data()
|
| 92 |
+
logger.info(f"Loaded {len(self.examples)} examples in {time.time() - start_time:.1f}s")
|
| 93 |
+
|
| 94 |
+
if torch.cuda.is_available():
|
| 95 |
+
torch.cuda.empty_cache()
|
| 96 |
gc.collect()
|
| 97 |
+
|
| 98 |
+
def _fast_load_data(self, data_file: str) -> None:
|
| 99 |
+
"""Load and filter data efficiently."""
|
| 100 |
+
logger.info("Reading and filtering data...")
|
| 101 |
with open(data_file, 'r', encoding='utf-8') as f:
|
| 102 |
+
lines = f.readlines()
|
| 103 |
+
|
| 104 |
+
logger.info(f"File contains {len(lines)} lines")
|
| 105 |
good_examples = []
|
| 106 |
+
seen_hashes = set()
|
| 107 |
+
|
| 108 |
for line in lines[:self.max_examples * 3]:
|
| 109 |
line = line.strip()
|
| 110 |
+
if (
|
| 111 |
+
50 <= len(line) <= 400 and
|
| 112 |
line.count(' ') >= 8 and
|
| 113 |
not line.lower().startswith(('http', 'www', 'ftp')) and
|
| 114 |
+
line.count('.') <= len(line) * 0.1
|
| 115 |
+
):
|
| 116 |
line_hash = hash(line[:100])
|
| 117 |
if line_hash not in seen_hashes:
|
| 118 |
seen_hashes.add(line_hash)
|
| 119 |
good_examples.append(line)
|
| 120 |
if len(good_examples) >= self.max_examples:
|
| 121 |
+
break
|
| 122 |
+
|
| 123 |
+
logger.info(f"Filtered to {len(good_examples)} quality examples")
|
| 124 |
+
|
| 125 |
batch_size = 1000
|
| 126 |
for i in range(0, len(good_examples), batch_size):
|
| 127 |
+
batch = good_examples[i:i + batch_size]
|
| 128 |
for line in batch:
|
| 129 |
try:
|
| 130 |
if not line.endswith('<|endoftext|>'):
|
| 131 |
+
line += ' <|endoftext|>'
|
| 132 |
tokens = self.tokenizer.encode_ids(line, add_special_tokens=True)
|
| 133 |
if 30 <= len(tokens) <= self.max_length:
|
| 134 |
if len(tokens) < self.max_length:
|
| 135 |
+
tokens.extend([self.pad_token_id] * (self.max_length - len(tokens)))
|
| 136 |
self.examples.append(tokens)
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.warning(f"Failed to process line: {e}")
|
| 139 |
continue
|
| 140 |
if i % 5000 == 0:
|
| 141 |
+
logger.info(f"Processed {len(self.examples)} examples...")
|
| 142 |
+
|
| 143 |
+
logger.info(f"Final dataset size: {len(self.examples)} examples")
|
| 144 |
+
|
| 145 |
+
def _tensorize_data(self) -> None:
|
| 146 |
+
"""Pre-tensorize data for faster training."""
|
| 147 |
+
logger.info("Pre-tensorizing data...")
|
| 148 |
+
seq_len = self.max_length - 1
|
| 149 |
tensorized_examples = []
|
| 150 |
+
|
| 151 |
for tokens in self.examples:
|
| 152 |
+
if len(tokens) != self.max_length:
|
| 153 |
+
continue
|
| 154 |
input_ids = torch.tensor(tokens[:-1], dtype=torch.long)
|
| 155 |
+
targets = torch.tensor(tokens[1:], dtype=torch.long)
|
| 156 |
original_len = next((i for i, x in enumerate(tokens) if x == self.pad_token_id), self.max_length)
|
| 157 |
mask_len = min(original_len, seq_len)
|
| 158 |
attention_mask = torch.zeros(seq_len, dtype=torch.long)
|
| 159 |
+
attention_mask[:mask_len] = 1
|
| 160 |
tensorized_examples.append({
|
| 161 |
'input_ids': input_ids,
|
| 162 |
'targets': targets,
|
| 163 |
'attention_mask': attention_mask
|
| 164 |
})
|
| 165 |
+
|
| 166 |
self.examples = tensorized_examples
|
| 167 |
+
logger.info("Data pre-tensorized successfully")
|
| 168 |
+
|
| 169 |
+
def __len__(self) -> int:
|
| 170 |
+
"""Return the number of examples in the dataset."""
|
| 171 |
+
return len(self.examples)
|
| 172 |
+
|
| 173 |
+
def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
|
| 174 |
+
"""Return a single example from the dataset."""
|
| 175 |
return self.examples[idx]
|
| 176 |
+
|
| 177 |
class FastCosineScheduler:
|
| 178 |
+
"""Cosine learning rate scheduler with warmup."""
|
| 179 |
+
|
| 180 |
+
def __init__(self, optimizer: optim.Optimizer, total_steps: int, warmup_ratio: float = DEFAULT_WARMUP_RATIO):
|
| 181 |
+
"""
|
| 182 |
+
Initialize the cosine scheduler.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
optimizer (optim.Optimizer): Optimizer to schedule.
|
| 186 |
+
total_steps (int): Total training steps.
|
| 187 |
+
warmup_ratio (float): Ratio of steps for warmup phase.
|
| 188 |
+
|
| 189 |
+
Raises:
|
| 190 |
+
ValueError: If total_steps or warmup_ratio is invalid.
|
| 191 |
+
"""
|
| 192 |
+
if total_steps <= 0 or not 0 <= warmup_ratio <= 1:
|
| 193 |
+
raise ValueError("total_steps must be positive and warmup_ratio must be in [0, 1]")
|
| 194 |
+
|
| 195 |
self.optimizer = optimizer
|
| 196 |
self.total_steps = total_steps
|
| 197 |
self.warmup_steps = int(total_steps * warmup_ratio)
|
| 198 |
self.base_lr = optimizer.param_groups[0]['lr']
|
| 199 |
+
self.step_count = 0
|
| 200 |
+
|
| 201 |
+
def step(self) -> float:
|
| 202 |
+
"""
|
| 203 |
+
Update the learning rate.
|
| 204 |
+
|
| 205 |
+
Returns:
|
| 206 |
+
float: Current learning rate.
|
| 207 |
+
"""
|
| 208 |
self.step_count += 1
|
| 209 |
if self.step_count <= self.warmup_steps:
|
| 210 |
lr = self.base_lr * self.step_count / self.warmup_steps
|
| 211 |
else:
|
| 212 |
progress = (self.step_count - self.warmup_steps) / (self.total_steps - self.warmup_steps)
|
| 213 |
lr = self.base_lr * 0.5 * (1 + math.cos(math.pi * progress))
|
| 214 |
+
|
| 215 |
for param_group in self.optimizer.param_groups:
|
| 216 |
param_group['lr'] = lr
|
| 217 |
return lr
|
| 218 |
+
|
| 219 |
class UltraFastTrainer:
|
| 220 |
+
"""Trainer optimized for fast training of transformer models."""
|
| 221 |
+
|
| 222 |
+
def __init__(
|
| 223 |
+
self,
|
| 224 |
+
model: nn.Module,
|
| 225 |
+
tokenizer: TechnicalTokenizer,
|
| 226 |
+
train_dataset: FastTechnicalTextDataset,
|
| 227 |
+
val_dataset: Optional[FastTechnicalTextDataset] = None,
|
| 228 |
+
config: Optional[Dict] = None
|
| 229 |
+
):
|
| 230 |
+
"""
|
| 231 |
+
Initialize the trainer.
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
model (nn.Module): The transformer model to train.
|
| 235 |
+
tokenizer (TechnicalTokenizer): Tokenizer for encoding/decoding.
|
| 236 |
+
train_dataset (FastTechnicalTextDataset): Training dataset.
|
| 237 |
+
val_dataset (Optional[FastTechnicalTextDataset]): Validation dataset.
|
| 238 |
+
config (Optional[Dict]): Training configuration.
|
| 239 |
+
|
| 240 |
+
Raises:
|
| 241 |
+
ValueError: If config contains invalid parameters.
|
| 242 |
+
"""
|
| 243 |
self.model = model
|
| 244 |
self.tokenizer = tokenizer
|
| 245 |
self.train_dataset = train_dataset
|
| 246 |
self.val_dataset = val_dataset
|
| 247 |
+
self.config = config or {}
|
| 248 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 249 |
+
self.model.to(self.device)
|
| 250 |
+
|
| 251 |
+
self._validate_config()
|
| 252 |
self._fast_init_weights()
|
| 253 |
+
self._setup_fast_optimizer()
|
| 254 |
+
|
| 255 |
+
epochs = self.config.get('epochs', DEFAULT_EPOCHS)
|
| 256 |
+
batch_size = self.config.get('batch_size', DEFAULT_BATCH_SIZE)
|
| 257 |
total_steps = len(train_dataset) // batch_size * epochs
|
| 258 |
self.scheduler = FastCosineScheduler(self.optimizer, total_steps)
|
| 259 |
+
self.scaler = GradScaler() if self.device.type == 'cuda' else None
|
| 260 |
self.global_step = 0
|
| 261 |
self.best_loss = float('inf')
|
| 262 |
+
self.grad_accum_steps = self.config.get('gradient_accumulation_steps', DEFAULT_GRAD_ACCUM_STEPS)
|
| 263 |
+
self.eval_every = self.config.get('eval_every', DEFAULT_EVAL_EVERY)
|
| 264 |
+
|
| 265 |
+
def _validate_config(self) -> None:
|
| 266 |
+
"""Validate training configuration."""
|
| 267 |
+
if self.config.get('batch_size', DEFAULT_BATCH_SIZE) <= 0:
|
| 268 |
+
raise ValueError("batch_size must be positive")
|
| 269 |
+
if self.config.get('epochs', DEFAULT_EPOCHS) <= 0:
|
| 270 |
+
raise ValueError("epochs must be positive")
|
| 271 |
+
if self.config.get('learning_rate', DEFAULT_LEARNING_RATE) <= 0:
|
| 272 |
+
raise ValueError("learning_rate must be positive")
|
| 273 |
+
if self.config.get('gradient_accumulation_steps', DEFAULT_GRAD_ACCUM_STEPS) <= 0:
|
| 274 |
+
raise ValueError("gradient_accumulation_steps must be positive")
|
| 275 |
+
|
| 276 |
+
def _fast_init_weights(self) -> None:
|
| 277 |
+
"""Initialize model weights."""
|
| 278 |
+
def fast_init(module: nn.Module) -> None:
|
| 279 |
if isinstance(module, nn.Linear):
|
| 280 |
nn.init.normal_(module.weight, std=0.02)
|
| 281 |
if module.bias is not None:
|
| 282 |
nn.init.zeros_(module.bias)
|
| 283 |
elif isinstance(module, nn.Embedding):
|
| 284 |
nn.init.normal_(module.weight, std=0.02)
|
| 285 |
+
self.model.apply(fast_init)
|
| 286 |
+
logger.info("Model weights initialized")
|
| 287 |
+
|
| 288 |
+
def _setup_fast_optimizer(self) -> None:
|
| 289 |
+
"""Set up AdamW optimizer."""
|
| 290 |
+
lr = self.config.get('learning_rate', DEFAULT_LEARNING_RATE)
|
| 291 |
params = [p for p in self.model.parameters() if p.requires_grad]
|
| 292 |
+
self.optimizer = optim.AdamW(params, lr=lr, betas=(0.9, 0.99), weight_decay=0.01, eps=1e-6)
|
| 293 |
+
logger.info(f"Optimizer initialized with learning rate: {lr}")
|
| 294 |
+
|
| 295 |
+
def compute_fast_loss(self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
| 296 |
+
"""
|
| 297 |
+
Compute masked cross-entropy loss.
|
| 298 |
+
|
| 299 |
+
Args:
|
| 300 |
+
logits (torch.Tensor): Model output logits of shape (batch_size, seq_len, vocab_size).
|
| 301 |
+
targets (torch.Tensor): Target token IDs of shape (batch_size, seq_len).
|
| 302 |
+
mask (torch.Tensor): Attention mask of shape (batch_size, seq_len).
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
torch.Tensor: Computed loss.
|
| 306 |
+
"""
|
| 307 |
logits_flat = logits.view(-1, logits.size(-1))
|
| 308 |
targets_flat = targets.view(-1)
|
| 309 |
mask_flat = mask.view(-1).bool()
|
| 310 |
+
|
| 311 |
if not mask_flat.any():
|
| 312 |
return torch.tensor(0.0, device=logits.device, requires_grad=True)
|
| 313 |
+
|
| 314 |
+
return F.cross_entropy(logits_flat[mask_flat], targets_flat[mask_flat])
|
| 315 |
+
|
| 316 |
def train_epoch_fast(self, epoch: int, dataloader: DataLoader) -> Dict[str, float]:
|
| 317 |
+
"""
|
| 318 |
+
Train for one epoch.
|
| 319 |
+
|
| 320 |
+
Args:
|
| 321 |
+
epoch (int): Current epoch number.
|
| 322 |
+
dataloader (DataLoader): Training data loader.
|
| 323 |
+
|
| 324 |
+
Returns:
|
| 325 |
+
Dict[str, float]: Training metrics (loss, perplexity, epoch_time_min).
|
| 326 |
+
"""
|
| 327 |
self.model.train()
|
| 328 |
total_loss = 0
|
| 329 |
num_batches = 0
|
| 330 |
+
start_time = time.time()
|
| 331 |
+
|
| 332 |
progress_bar = tqdm(dataloader, desc=f"Epoch {epoch}", leave=False, miniters=50)
|
| 333 |
for batch_idx, batch in enumerate(progress_bar):
|
| 334 |
input_ids = batch['input_ids'].to(self.device, non_blocking=True)
|
| 335 |
targets = batch['targets'].to(self.device, non_blocking=True)
|
| 336 |
+
mask = batch['attention_mask'].to(self.device, non_blocking=True)
|
| 337 |
+
|
| 338 |
+
with autocast(enabled=self.device.type == 'cuda'):
|
| 339 |
logits, comp_loss = self.model(input_ids, mask)
|
| 340 |
lm_loss = self.compute_fast_loss(logits, targets, mask)
|
| 341 |
total_loss_step = lm_loss + 0.0001 * comp_loss
|
| 342 |
if self.grad_accum_steps > 1:
|
| 343 |
+
total_loss_step = total_loss_step / self.grad_accum_steps
|
| 344 |
+
|
| 345 |
+
if self.scaler:
|
| 346 |
+
self.scaler.scale(total_loss_step).backward()
|
| 347 |
+
if (batch_idx + 1) % self.grad_accum_steps == 0:
|
| 348 |
+
self.scaler.unscale_(self.optimizer)
|
| 349 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
|
| 350 |
+
self.scaler.step(self.optimizer)
|
| 351 |
+
self.scaler.update()
|
| 352 |
+
self.optimizer.zero_grad(set_to_none=True)
|
| 353 |
+
self.scheduler.step()
|
| 354 |
+
self.global_step += 1
|
| 355 |
+
else:
|
| 356 |
+
total_loss_step.backward()
|
| 357 |
+
if (batch_idx + 1) % self.grad_accum_steps == 0:
|
| 358 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
|
| 359 |
+
self.optimizer.step()
|
| 360 |
+
self.optimizer.zero_grad(set_to_none=True)
|
| 361 |
+
self.scheduler.step()
|
| 362 |
+
self.global_step += 1
|
| 363 |
+
|
| 364 |
total_loss += lm_loss.item()
|
| 365 |
num_batches += 1
|
| 366 |
+
|
| 367 |
if batch_idx % 100 == 0:
|
| 368 |
current_loss = total_loss / num_batches
|
| 369 |
progress_bar.set_postfix({'loss': f"{current_loss:.3f}", 'ppl': f"{math.exp(min(current_loss, 10)):.1f}"})
|
| 370 |
+
|
| 371 |
+
if batch_idx % 200 == 0 and batch_idx > 0 and self.device.type == 'cuda':
|
| 372 |
+
torch.cuda.empty_cache()
|
| 373 |
+
|
| 374 |
avg_loss = total_loss / max(num_batches, 1)
|
| 375 |
+
return {
|
| 376 |
+
'loss': avg_loss,
|
| 377 |
+
'perplexity': math.exp(min(avg_loss, 10)),
|
| 378 |
+
'epoch_time_min': (time.time() - start_time) / 60
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
def validate_fast(self, dataloader: DataLoader) -> Dict[str, float]:
|
| 382 |
+
"""
|
| 383 |
+
Validate the model on the validation dataset.
|
| 384 |
+
|
| 385 |
+
Args:
|
| 386 |
+
dataloader (DataLoader): Validation data loader.
|
| 387 |
+
|
| 388 |
+
Returns:
|
| 389 |
+
Dict[str, float]: Validation metrics (loss, perplexity).
|
| 390 |
+
"""
|
| 391 |
self.model.eval()
|
| 392 |
total_loss = 0
|
| 393 |
num_batches = 0
|
| 394 |
+
max_val_batches = min(100, len(dataloader))
|
| 395 |
+
|
| 396 |
with torch.no_grad():
|
| 397 |
for batch_idx, batch in enumerate(dataloader):
|
| 398 |
if batch_idx >= max_val_batches:
|
|
|
|
| 400 |
input_ids = batch['input_ids'].to(self.device, non_blocking=True)
|
| 401 |
targets = batch['targets'].to(self.device, non_blocking=True)
|
| 402 |
mask = batch['attention_mask'].to(self.device, non_blocking=True)
|
| 403 |
+
|
| 404 |
+
with autocast(enabled=self.device.type == 'cuda'):
|
| 405 |
logits, _ = self.model(input_ids, mask)
|
| 406 |
loss = self.compute_fast_loss(logits, targets, mask)
|
| 407 |
+
|
| 408 |
total_loss += loss.item()
|
| 409 |
+
num_batches += 1
|
| 410 |
+
|
| 411 |
avg_loss = total_loss / max(num_batches, 1)
|
| 412 |
+
return {'loss': avg_loss, 'perplexity': math.exp(min(avg_loss, 10))}
|
| 413 |
+
|
| 414 |
+
def save_checkpoint_fast(self, epoch: int, metrics: Dict, save_dir: str = DEFAULT_CHECKPOINT_DIR) -> Optional[str]:
|
| 415 |
+
"""
|
| 416 |
+
Save a checkpoint if the loss improves.
|
| 417 |
+
|
| 418 |
+
Args:
|
| 419 |
+
epoch (int): Current epoch number.
|
| 420 |
+
metrics (Dict): Training and validation metrics.
|
| 421 |
+
save_dir (str): Directory to save checkpoints.
|
| 422 |
+
|
| 423 |
+
Returns:
|
| 424 |
+
Optional[str]: Path to the saved checkpoint or None.
|
| 425 |
+
"""
|
| 426 |
os.makedirs(save_dir, exist_ok=True)
|
| 427 |
val_loss = metrics.get('val_loss', metrics.get('loss', float('inf')))
|
| 428 |
+
|
| 429 |
if val_loss < self.best_loss:
|
| 430 |
self.best_loss = val_loss
|
| 431 |
checkpoint = {
|
|
|
|
| 433 |
'model_state_dict': self.model.state_dict(),
|
| 434 |
'optimizer_state_dict': self.optimizer.state_dict(),
|
| 435 |
'metrics': metrics,
|
| 436 |
+
'scaler_state_dict': self.scaler.state_dict() if self.scaler else None
|
| 437 |
}
|
| 438 |
best_path = os.path.join(save_dir, "best_model.pt")
|
| 439 |
torch.save(checkpoint, best_path)
|
| 440 |
+
logger.info(f"New best checkpoint saved: {best_path}, Loss: {val_loss:.4f}")
|
| 441 |
return best_path
|
| 442 |
+
return None
|
| 443 |
+
|
| 444 |
+
def train_ultra_fast(self, num_epochs: int = DEFAULT_EPOCHS, batch_size: int = DEFAULT_BATCH_SIZE) -> List[Dict]:
|
| 445 |
+
"""
|
| 446 |
+
Train the model with optimized settings.
|
| 447 |
+
|
| 448 |
+
Args:
|
| 449 |
+
num_epochs (int): Number of training epochs.
|
| 450 |
+
batch_size (int): Batch size for training.
|
| 451 |
+
|
| 452 |
+
Returns:
|
| 453 |
+
List[Dict]: Training history with metrics for each epoch.
|
| 454 |
+
"""
|
| 455 |
+
logger.info(f"Starting ultra-fast training: {num_epochs} epochs, batch_size={batch_size}")
|
| 456 |
+
logger.info("Target: Loss < 2.0, PPL < 12, Time: 4-5 hours")
|
| 457 |
+
|
| 458 |
train_loader = DataLoader(
|
| 459 |
self.train_dataset,
|
| 460 |
batch_size=batch_size,
|
| 461 |
shuffle=True,
|
| 462 |
+
num_workers=min(multiprocessing.cpu_count(), 4),
|
| 463 |
+
pin_memory=self.device.type == 'cuda',
|
| 464 |
persistent_workers=True,
|
| 465 |
drop_last=True
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
val_loader = None
|
| 469 |
if self.val_dataset:
|
| 470 |
val_loader = DataLoader(
|
| 471 |
self.val_dataset,
|
| 472 |
batch_size=batch_size * 2,
|
| 473 |
shuffle=False,
|
| 474 |
+
num_workers=min(multiprocessing.cpu_count() // 2, 2),
|
| 475 |
+
pin_memory=self.device.type == 'cuda'
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
total_start_time = time.time()
|
| 479 |
+
history = []
|
| 480 |
+
|
| 481 |
for epoch in range(1, num_epochs + 1):
|
| 482 |
+
logger.info(f"Starting epoch {epoch}/{num_epochs}")
|
| 483 |
+
train_metrics = self.train_epoch_fast(epoch, train_loader)
|
| 484 |
+
|
| 485 |
val_metrics = {}
|
| 486 |
if val_loader and (epoch % 2 == 0 or epoch == num_epochs):
|
| 487 |
+
val_metrics = self.validate_fast(val_loader)
|
| 488 |
+
|
| 489 |
+
epoch_time = train_metrics['epoch_time_min'] * 60
|
| 490 |
epoch_info = {
|
| 491 |
'epoch': epoch,
|
| 492 |
'train_loss': train_metrics['loss'],
|
| 493 |
'train_ppl': train_metrics['perplexity'],
|
| 494 |
+
'epoch_time_min': train_metrics['epoch_time_min']
|
| 495 |
}
|
| 496 |
if val_metrics:
|
| 497 |
epoch_info.update({'val_loss': val_metrics['loss'], 'val_ppl': val_metrics['perplexity']})
|
| 498 |
+
|
| 499 |
+
history.append(epoch_info)
|
| 500 |
+
|
| 501 |
elapsed_hours = (time.time() - total_start_time) / 3600
|
| 502 |
+
remaining_hours = elapsed_hours * (num_epochs - epoch) / max(epoch, 1)
|
| 503 |
+
|
| 504 |
+
logger.info(f"Epoch {epoch} results:")
|
| 505 |
+
logger.info(f" Epoch time: {epoch_time/60:.1f} min")
|
| 506 |
+
logger.info(f" Total elapsed: {elapsed_hours:.1f}h")
|
| 507 |
+
logger.info(f" Est. remaining: {remaining_hours:.1f}h")
|
| 508 |
+
logger.info(f" Train Loss: {train_metrics['loss']:.4f}")
|
| 509 |
+
logger.info(f" Train PPL: {train_metrics['perplexity']:.1f}")
|
| 510 |
if val_metrics:
|
| 511 |
+
logger.info(f" Val Loss: {val_metrics['loss']:.4f}")
|
| 512 |
+
logger.info(f" Val PPL: {val_metrics['perplexity']:.1f}")
|
| 513 |
+
|
| 514 |
current_loss = val_metrics.get('loss', train_metrics['loss'])
|
| 515 |
current_ppl = val_metrics.get('perplexity', train_metrics['perplexity'])
|
| 516 |
if current_loss < 2.0 and current_ppl < 12:
|
| 517 |
+
logger.info(f"Targets achieved: Loss={current_loss:.4f} < 2.0, PPL={current_ppl:.1f} < 12")
|
| 518 |
+
|
|
|
|
| 519 |
combined_metrics = {**train_metrics}
|
| 520 |
if val_metrics:
|
| 521 |
combined_metrics.update({f"val_{k}": v for k, v in val_metrics.items()})
|
| 522 |
+
self.save_checkpoint_fast(epoch, combined_metrics)
|
| 523 |
+
|
| 524 |
+
if self.device.type == 'cuda':
|
| 525 |
+
torch.cuda.empty_cache()
|
| 526 |
+
gc.collect()
|
| 527 |
+
|
| 528 |
if current_loss < 1.8 and current_ppl < 10:
|
| 529 |
+
logger.info("Early stopping: Excellent performance achieved!")
|
| 530 |
+
break
|
| 531 |
+
|
| 532 |
+
total_time = (time.time() - total_start_time) / 3600
|
| 533 |
+
logger.info(f"Training completed in {total_time:.1f} hours")
|
| 534 |
+
logger.info(f"Best loss: {self.best_loss:.4f}")
|
| 535 |
return history
|
| 536 |
+
|
| 537 |
+
def run_ultra_fast_training() -> int:
|
| 538 |
+
"""
|
| 539 |
+
Run the ultra-fast training pipeline.
|
| 540 |
+
|
| 541 |
+
Returns:
|
| 542 |
+
int: Exit code (0 for success, 1 for failure).
|
| 543 |
+
"""
|
| 544 |
+
parser = argparse.ArgumentParser(description="Ultra-Fast Training for MixtureOfRecursions Model")
|
| 545 |
+
parser.add_argument("--train_file", default=None, help="Path to training data file")
|
| 546 |
+
parser.add_argument("--val_file", default=None, help="Path to validation data file")
|
| 547 |
+
parser.add_argument("--tokenizer_dir", default="tokenizer", help="Directory for tokenizer files")
|
| 548 |
+
parser.add_argument("--max_examples", type=int, default=DEFAULT_MAX_EXAMPLES, help="Maximum number of training examples")
|
| 549 |
+
parser.add_argument("--d_model", type=int, default=DEFAULT_D_MODEL, help="Model embedding dimension")
|
| 550 |
+
parser.add_argument("--n_layers", type=int, default=DEFAULT_N_LAYERS, help="Number of transformer layers")
|
| 551 |
+
parser.add_argument("--n_heads", type=int, default=DEFAULT_N_HEADS, help="Number of attention heads")
|
| 552 |
+
parser.add_argument("--max_seq_len", type=int, default=DEFAULT_MAX_LENGTH, help="Maximum sequence length")
|
| 553 |
+
parser.add_argument("--epochs", type=int, default=DEFAULT_EPOCHS, help="Number of training epochs")
|
| 554 |
+
parser.add_argument("--batch_size", type=int, default=DEFAULT_BATCH_SIZE, help="Batch size for training")
|
| 555 |
+
parser.add_argument("--learning_rate", type=float, default=DEFAULT_LEARNING_RATE, help="Learning rate")
|
| 556 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=DEFAULT_GRAD_ACCUM_STEPS, help="Gradient accumulation steps")
|
| 557 |
+
parser.add_argument("--eval_every", type=int, default=DEFAULT_EVAL_EVERY, help="Evaluate every N steps")
|
| 558 |
+
|
| 559 |
+
args = parser.parse_args()
|
| 560 |
+
|
| 561 |
torch.manual_seed(42)
|
| 562 |
+
np.random.seed(42)
|
| 563 |
+
|
| 564 |
+
logger.info("Starting ultra-fast training pipeline")
|
| 565 |
+
|
| 566 |
if args.train_file is None:
|
| 567 |
patterns = ["*train*.txt", "*_train.txt"]
|
| 568 |
files = []
|
| 569 |
for pattern in patterns:
|
| 570 |
files.extend(glob.glob(pattern))
|
| 571 |
+
files.extend(glob.glob(os.path.join("split_data", pattern)))
|
| 572 |
+
files.extend(glob.glob(os.path.join("data", pattern)))
|
| 573 |
if files:
|
| 574 |
args.train_file = files[0]
|
| 575 |
+
logger.info(f"Found training file: {args.train_file}")
|
| 576 |
else:
|
| 577 |
+
logger.error("No training files found!")
|
| 578 |
+
return 1
|
| 579 |
+
|
| 580 |
try:
|
| 581 |
+
tokenizer = TechnicalTokenizer()
|
| 582 |
tokenizer.load(args.tokenizer_dir)
|
| 583 |
+
logger.info(f"Tokenizer loaded with vocab size: {tokenizer.get_vocab_size()}")
|
| 584 |
except Exception as e:
|
| 585 |
+
logger.error(f"Failed to load tokenizer: {e}")
|
| 586 |
+
return 1
|
| 587 |
+
|
| 588 |
+
logger.info("Creating training dataset...")
|
| 589 |
+
try:
|
| 590 |
+
train_dataset = FastTechnicalTextDataset(
|
| 591 |
+
args.train_file, tokenizer, args.max_seq_len, args.max_examples
|
| 592 |
+
)
|
| 593 |
+
except Exception as e:
|
| 594 |
+
logger.error(f"Failed to create training dataset: {e}")
|
| 595 |
+
return 1
|
| 596 |
+
|
| 597 |
val_dataset = None
|
| 598 |
if args.val_file and os.path.exists(args.val_file):
|
| 599 |
+
try:
|
| 600 |
+
val_dataset = FastTechnicalTextDataset(
|
| 601 |
+
args.val_file, tokenizer, args.max_seq_len, max_examples=5000
|
| 602 |
+
)
|
| 603 |
+
logger.info("Validation dataset created")
|
| 604 |
+
except Exception as e:
|
| 605 |
+
logger.warning(f"Failed to create validation dataset: {e}")
|
| 606 |
+
|
| 607 |
+
try:
|
| 608 |
+
model = MixtureOfRecursions(
|
| 609 |
+
vocab_size=tokenizer.get_vocab_size(),
|
| 610 |
+
d_model=args.d_model,
|
| 611 |
+
n_layers=args.n_layers,
|
| 612 |
+
n_heads=args.n_heads,
|
| 613 |
+
max_seq_len=args.max_seq_len - 1,
|
| 614 |
+
padding_idx=tokenizer.vocab.get('<pad>', 0)
|
| 615 |
+
)
|
| 616 |
+
logger.info("Model initialized")
|
| 617 |
+
except Exception as e:
|
| 618 |
+
logger.error(f"Failed to initialize model: {e}")
|
| 619 |
+
return 1
|
| 620 |
+
|
| 621 |
config = {
|
| 622 |
'learning_rate': args.learning_rate,
|
| 623 |
'gradient_accumulation_steps': args.gradient_accumulation_steps,
|
| 624 |
'eval_every': args.eval_every,
|
| 625 |
'batch_size': args.batch_size,
|
| 626 |
'epochs': args.epochs
|
| 627 |
+
}
|
| 628 |
+
|
| 629 |
+
try:
|
| 630 |
+
trainer = UltraFastTrainer(model, tokenizer, train_dataset, val_dataset, config)
|
| 631 |
+
results = trainer.train_ultra_fast(args.epochs, args.batch_size)
|
| 632 |
+
|
| 633 |
+
with open('ultra_fast_results.json', 'w') as f:
|
| 634 |
+
json.dump(results, f, indent=2)
|
| 635 |
+
logger.info("Training results saved to ultra_fast_results.json")
|
| 636 |
+
|
| 637 |
+
return 0
|
| 638 |
+
except Exception as e:
|
| 639 |
+
logger.error(f"Training failed: {e}")
|
| 640 |
+
return 1
|
| 641 |
+
|
| 642 |
if __name__ == "__main__":
|
| 643 |
exit(run_ultra_fast_training())
|