Create custom_tokenizer.py
Browse files- custom_tokenizer.py +437 -0
custom_tokenizer.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import pickle
|
| 4 |
+
import argparse
|
| 5 |
+
from collections import Counter, defaultdict
|
| 6 |
+
from typing import List, Dict, Set, Optional, Tuple
|
| 7 |
+
import re
|
| 8 |
+
import unicodedata
|
| 9 |
+
class TechnicalTokenizer:
|
| 10 |
+
"""
|
| 11 |
+
Custom tokenizer optimized for technical content and conversations
|
| 12 |
+
"""
|
| 13 |
+
def __init__(self, vocab_size: int = 32000, min_freq: int = 2):
|
| 14 |
+
self.vocab_size = vocab_size
|
| 15 |
+
self.min_freq = min_freq
|
| 16 |
+
self.special_tokens = {
|
| 17 |
+
'<pad>': 0,
|
| 18 |
+
'<unk>': 1,
|
| 19 |
+
'<bos>': 2,
|
| 20 |
+
'<eos>': 3,
|
| 21 |
+
'<system>': 4,
|
| 22 |
+
'<user>': 5,
|
| 23 |
+
'<assistant>': 6,
|
| 24 |
+
'<|endoftext|>': 7,
|
| 25 |
+
'<|newline|>': 8,
|
| 26 |
+
'<|tab|>': 9,
|
| 27 |
+
'<|code|>': 10,
|
| 28 |
+
'<|/code|>': 11,
|
| 29 |
+
'<|math|>': 12,
|
| 30 |
+
'<|/math|>': 13
|
| 31 |
+
}
|
| 32 |
+
self.vocab = {}
|
| 33 |
+
self.id_to_token = {}
|
| 34 |
+
self.token_frequencies = Counter()
|
| 35 |
+
self.bpe_merges = []
|
| 36 |
+
self.bpe_cache = {}
|
| 37 |
+
self.code_pattern = re.compile(r'```[\s\S]*?```|`[^`]+`')
|
| 38 |
+
self.url_pattern = re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+')
|
| 39 |
+
self.email_pattern = re.compile(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b')
|
| 40 |
+
self.number_pattern = re.compile(r'\b\d+\.?\d*\b')
|
| 41 |
+
self.technical_terms = {
|
| 42 |
+
'function', 'variable', 'array', 'object', 'class', 'method', 'parameter',
|
| 43 |
+
'return', 'import', 'export', 'async', 'await', 'promise', 'callback',
|
| 44 |
+
'algorithm', 'datatype', 'boolean', 'integer', 'string', 'float',
|
| 45 |
+
'javascript', 'python', 'java', 'cpp', 'html', 'css', 'sql',
|
| 46 |
+
'api', 'json', 'xml', 'http', 'https', 'rest', 'graphql',
|
| 47 |
+
'equation', 'formula', 'theorem', 'proof', 'hypothesis',
|
| 48 |
+
'derivative', 'integral', 'matrix', 'vector', 'polynomial',
|
| 49 |
+
'probability', 'statistics', 'correlation', 'regression',
|
| 50 |
+
'neural', 'network', 'model', 'training', 'validation', 'test',
|
| 51 |
+
'accuracy', 'precision', 'recall', 'f1score', 'loss', 'gradient',
|
| 52 |
+
'backpropagation', 'forward', 'layer', 'neuron', 'weight', 'bias',
|
| 53 |
+
'transformer', 'attention', 'embedding', 'tokenization',
|
| 54 |
+
'database', 'server', 'client', 'protocol', 'encryption', 'security',
|
| 55 |
+
'authentication', 'authorization', 'deployment', 'docker', 'kubernetes',
|
| 56 |
+
'microservice', 'architecture', 'scalability', 'performance'
|
| 57 |
+
}
|
| 58 |
+
self._init_vocab()
|
| 59 |
+
def _init_vocab(self):
|
| 60 |
+
self.vocab = self.special_tokens.copy()
|
| 61 |
+
self.id_to_token = {v: k for k, v in self.special_tokens.items()}
|
| 62 |
+
def normalize_text(self, text: str) -> str:
|
| 63 |
+
text = re.sub(r'\r\n|\r', '\n', text)
|
| 64 |
+
text = re.sub(r'\t', '<|tab|>', text)
|
| 65 |
+
text = unicodedata.normalize('NFKC', text)
|
| 66 |
+
code_blocks = []
|
| 67 |
+
def replace_code(match):
|
| 68 |
+
code_blocks.append(match.group())
|
| 69 |
+
return f'<|code|>CODE_BLOCK_{len(code_blocks)-1}<|/code|>'
|
| 70 |
+
text = self.code_pattern.sub(replace_code, text)
|
| 71 |
+
text = self.url_pattern.sub('<URL>', text)
|
| 72 |
+
text = self.email_pattern.sub('<EMAIL>', text)
|
| 73 |
+
for i, code_block in enumerate(code_blocks):
|
| 74 |
+
text = text.replace(f'<|code|>CODE_BLOCK_{i}<|/code|>', code_block)
|
| 75 |
+
return text
|
| 76 |
+
def pre_tokenize(self, text: str) -> List[str]:
|
| 77 |
+
text = self.normalize_text(text)
|
| 78 |
+
text = re.sub(r'<\|system\|>', ' <system> ', text)
|
| 79 |
+
text = re.sub(r'<\|user\|>', ' <user> ', text)
|
| 80 |
+
text = re.sub(r'<\|assistant\|>', ' <assistant> ', text)
|
| 81 |
+
text = re.sub(r'<\|endoftext\|>', ' <|endoftext|> ', text)
|
| 82 |
+
tokens = re.findall(r'''
|
| 83 |
+
<[^>]+>| # Special tokens
|
| 84 |
+
\b\w+@\w+\.\w+\b| # Email-like patterns
|
| 85 |
+
https?://\S+| # URLs
|
| 86 |
+
```[\s\S]*?```| # Code blocks
|
| 87 |
+
`[^`]+`| # Inline code
|
| 88 |
+
\b\d+\.?\d*\b| # Numbers
|
| 89 |
+
\b[a-zA-Z]+(?:'[a-z]*)?| # Words with optional apostrophes
|
| 90 |
+
[^\w\s] # Punctuation
|
| 91 |
+
''', text, re.VERBOSE)
|
| 92 |
+
return [token.strip() for token in tokens if token.strip()]
|
| 93 |
+
def get_pairs(self, word_freqs: Dict[Tuple[str, ...], int]) -> Counter:
|
| 94 |
+
pairs = Counter()
|
| 95 |
+
for word, freq in word_freqs.items():
|
| 96 |
+
if len(word) < 2:
|
| 97 |
+
continue
|
| 98 |
+
for i in range(len(word) - 1):
|
| 99 |
+
pair = (word[i], word[i + 1])
|
| 100 |
+
pairs[pair] += freq
|
| 101 |
+
return pairs
|
| 102 |
+
def merge_symbols(self, pair: Tuple[str, str], word_freqs: Dict[Tuple[str, ...], int]) -> Dict[Tuple[str, ...], int]:
|
| 103 |
+
new_word_freqs = {}
|
| 104 |
+
bigram = pair
|
| 105 |
+
for word, freq in word_freqs.items():
|
| 106 |
+
new_word = []
|
| 107 |
+
i = 0
|
| 108 |
+
while i < len(word):
|
| 109 |
+
if i < len(word) - 1 and (word[i], word[i + 1]) == bigram:
|
| 110 |
+
new_word.append(word[i] + word[i + 1])
|
| 111 |
+
i += 2
|
| 112 |
+
else:
|
| 113 |
+
new_word.append(word[i])
|
| 114 |
+
i += 1
|
| 115 |
+
new_word_freqs[tuple(new_word)] = freq
|
| 116 |
+
return new_word_freqs
|
| 117 |
+
def train_bpe(self, texts: List[str]) -> None:
|
| 118 |
+
print("Training BPE tokenizer...")
|
| 119 |
+
word_freqs = Counter()
|
| 120 |
+
for i, text in enumerate(texts):
|
| 121 |
+
if i % 10000 == 0:
|
| 122 |
+
print(f"Processing text {i}/{len(texts)}")
|
| 123 |
+
tokens = self.pre_tokenize(text)
|
| 124 |
+
for token in tokens:
|
| 125 |
+
char_seq = tuple(token)
|
| 126 |
+
if len(char_seq) > 0:
|
| 127 |
+
word_freqs[char_seq] += 1
|
| 128 |
+
print(f"Found {len(word_freqs)} unique word patterns")
|
| 129 |
+
word_freqs = {word: freq for word, freq in word_freqs.items() if freq >= self.min_freq}
|
| 130 |
+
for term in self.technical_terms:
|
| 131 |
+
if (term,) in word_freqs:
|
| 132 |
+
word_freqs[(term,)] *= 10
|
| 133 |
+
all_chars = set()
|
| 134 |
+
for word in word_freqs:
|
| 135 |
+
all_chars.update(word)
|
| 136 |
+
for char in sorted(all_chars):
|
| 137 |
+
if char not in self.vocab:
|
| 138 |
+
self.vocab[char] = len(self.vocab)
|
| 139 |
+
self.id_to_token[len(self.id_to_token)] = char
|
| 140 |
+
target_vocab_size = self.vocab_size - len(self.special_tokens)
|
| 141 |
+
num_merges = target_vocab_size - len(self.vocab)
|
| 142 |
+
for i in range(num_merges):
|
| 143 |
+
if i % 1000 == 0:
|
| 144 |
+
print(f"BPE merge {i}/{num_merges}")
|
| 145 |
+
pairs = self.get_pairs(word_freqs)
|
| 146 |
+
if not pairs:
|
| 147 |
+
break
|
| 148 |
+
best_pair = pairs.most_common(1)[0][0]
|
| 149 |
+
word_freqs = self.merge_symbols(best_pair, word_freqs)
|
| 150 |
+
merged_token = best_pair[0] + best_pair[1]
|
| 151 |
+
if merged_token not in self.vocab:
|
| 152 |
+
self.vocab[merged_token] = len(self.vocab)
|
| 153 |
+
self.id_to_token[len(self.id_to_token)] = merged_token
|
| 154 |
+
self.bpe_merges.append(best_pair)
|
| 155 |
+
print(f"BPE training complete. Final vocabulary size: {len(self.vocab)}")
|
| 156 |
+
for word, freq in word_freqs.items():
|
| 157 |
+
for token in word:
|
| 158 |
+
self.token_frequencies[token] += freq
|
| 159 |
+
def apply_bpe(self, word: str) -> List[str]:
|
| 160 |
+
if word in self.bpe_cache:
|
| 161 |
+
return self.bpe_cache[word]
|
| 162 |
+
tokens = list(word)
|
| 163 |
+
for merge in self.bpe_merges:
|
| 164 |
+
i = 0
|
| 165 |
+
while i < len(tokens) - 1:
|
| 166 |
+
if tokens[i] == merge[0] and tokens[i + 1] == merge[1]:
|
| 167 |
+
tokens = tokens[:i] + [merge[0] + merge[1]] + tokens[i + 2:]
|
| 168 |
+
else:
|
| 169 |
+
i += 1
|
| 170 |
+
self.bpe_cache[word] = tokens
|
| 171 |
+
return tokens
|
| 172 |
+
def tokenize(self, text: str) -> List[str]:
|
| 173 |
+
pre_tokens = self.pre_tokenize(text)
|
| 174 |
+
final_tokens = []
|
| 175 |
+
for token in pre_tokens:
|
| 176 |
+
if token in self.special_tokens or token in self.vocab:
|
| 177 |
+
final_tokens.append(token)
|
| 178 |
+
else:
|
| 179 |
+
bpe_tokens = self.apply_bpe(token)
|
| 180 |
+
final_tokens.extend(bpe_tokens)
|
| 181 |
+
return final_tokens
|
| 182 |
+
def encode_ids(self, text: str, add_special_tokens: bool = True) -> List[int]:
|
| 183 |
+
tokens = self.tokenize(text)
|
| 184 |
+
if add_special_tokens:
|
| 185 |
+
tokens = ['<bos>'] + tokens + ['<eos>']
|
| 186 |
+
ids = []
|
| 187 |
+
for token in tokens:
|
| 188 |
+
ids.append(self.vocab.get(token, self.vocab['<unk>']))
|
| 189 |
+
return ids
|
| 190 |
+
def decode_ids(self, ids: List[int], skip_special_tokens: bool = True) -> str:
|
| 191 |
+
tokens = []
|
| 192 |
+
for id in ids:
|
| 193 |
+
token = self.id_to_token.get(id, '<unk>')
|
| 194 |
+
if skip_special_tokens and token in self.special_tokens:
|
| 195 |
+
continue
|
| 196 |
+
tokens.append(token)
|
| 197 |
+
text = ''.join(tokens)
|
| 198 |
+
text = text.replace('<|tab|>', '\t')
|
| 199 |
+
text = text.replace('<|newline|>', '\n')
|
| 200 |
+
return text
|
| 201 |
+
def save(self, save_dir: str):
|
| 202 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 203 |
+
with open(os.path.join(save_dir, 'vocab.json'), 'w', encoding='utf-8') as f:
|
| 204 |
+
json.dump(self.vocab, f, indent=2, ensure_ascii=False)
|
| 205 |
+
with open(os.path.join(save_dir, 'merges.txt'), 'w', encoding='utf-8') as f:
|
| 206 |
+
for merge in self.bpe_merges:
|
| 207 |
+
f.write(f"{merge[0]} {merge[1]}\n")
|
| 208 |
+
config = {
|
| 209 |
+
'vocab_size': self.vocab_size,
|
| 210 |
+
'min_freq': self.min_freq,
|
| 211 |
+
'special_tokens': self.special_tokens,
|
| 212 |
+
'technical_terms': list(self.technical_terms)
|
| 213 |
+
}
|
| 214 |
+
with open(os.path.join(save_dir, 'tokenizer_config.json'), 'w', encoding='utf-8') as f:
|
| 215 |
+
json.dump(config, f, indent=2, ensure_ascii=False)
|
| 216 |
+
with open(os.path.join(save_dir, 'token_frequencies.pkl'), 'wb') as f:
|
| 217 |
+
pickle.dump(dict(self.token_frequencies), f)
|
| 218 |
+
print(f"Tokenizer saved to {save_dir}")
|
| 219 |
+
def load(self, save_dir: str):
|
| 220 |
+
with open(os.path.join(save_dir, 'vocab.json'), 'r', encoding='utf-8') as f:
|
| 221 |
+
self.vocab = json.load(f)
|
| 222 |
+
self.id_to_token = {v: k for k, v in self.vocab.items()}
|
| 223 |
+
with open(os.path.join(save_dir, 'merges.txt'), 'r', encoding='utf-8') as f:
|
| 224 |
+
self.bpe_merges = [tuple(line.strip().split()) for line in f if line.strip()]
|
| 225 |
+
config_file = os.path.join(save_dir, 'tokenizer_config.json')
|
| 226 |
+
if os.path.exists(config_file):
|
| 227 |
+
with open(config_file, 'r', encoding='utf-8') as f:
|
| 228 |
+
config = json.load(f)
|
| 229 |
+
self.vocab_size = config.get('vocab_size', self.vocab_size)
|
| 230 |
+
self.min_freq = config.get('min_freq', self.min_freq)
|
| 231 |
+
if 'technical_terms' in config:
|
| 232 |
+
self.technical_terms = set(config['technical_terms'])
|
| 233 |
+
freq_file = os.path.join(save_dir, 'token_frequencies.pkl')
|
| 234 |
+
if os.path.exists(freq_file):
|
| 235 |
+
with open(freq_file, 'rb') as f:
|
| 236 |
+
self.token_frequencies = Counter(pickle.load(f))
|
| 237 |
+
self.bpe_cache = {}
|
| 238 |
+
print(f"Tokenizer loaded from {save_dir}")
|
| 239 |
+
print(f"Vocabulary size: {len(self.vocab)}")
|
| 240 |
+
print(f"Number of BPE merges: {len(self.bpe_merges)}")
|
| 241 |
+
def get_vocab_size(self) -> int:
|
| 242 |
+
return len(self.vocab)
|
| 243 |
+
def get_token_frequency(self, token: str) -> int:
|
| 244 |
+
return self.token_frequencies.get(token, 0)
|
| 245 |
+
def analyze_tokenization(self, text: str):
|
| 246 |
+
tokens = self.tokenize(text)
|
| 247 |
+
ids = self.encode_ids(text, add_special_tokens=False)
|
| 248 |
+
print(f"Original text: {text}")
|
| 249 |
+
print(f"Tokens: {tokens}")
|
| 250 |
+
print(f"Token IDs: {ids}")
|
| 251 |
+
print(f"Number of tokens: {len(tokens)}")
|
| 252 |
+
print(f"Compression ratio: {len(text.split())/len(tokens):.2f}")
|
| 253 |
+
return tokens, ids
|
| 254 |
+
class ConversationDataset:
|
| 255 |
+
"""Dataset class for handling conversation data with the custom tokenizer"""
|
| 256 |
+
def __init__(self, data_file: str, tokenizer: TechnicalTokenizer, max_length: int = 512):
|
| 257 |
+
self.data_file = data_file
|
| 258 |
+
self.tokenizer = tokenizer
|
| 259 |
+
self.max_length = max_length
|
| 260 |
+
self.conversations = []
|
| 261 |
+
self.load_conversations()
|
| 262 |
+
def load_conversations(self):
|
| 263 |
+
print(f"Loading conversations from {self.data_file}")
|
| 264 |
+
if self.data_file.endswith('.jsonl'):
|
| 265 |
+
self.load_jsonl()
|
| 266 |
+
else:
|
| 267 |
+
self.load_text()
|
| 268 |
+
print(f"Loaded {len(self.conversations)} conversations")
|
| 269 |
+
def load_jsonl(self):
|
| 270 |
+
with open(self.data_file, 'r', encoding='utf-8') as f:
|
| 271 |
+
for line in f:
|
| 272 |
+
try:
|
| 273 |
+
conv = json.loads(line.strip())
|
| 274 |
+
messages = conv.get("messages", [])
|
| 275 |
+
if not messages:
|
| 276 |
+
continue
|
| 277 |
+
text_parts = []
|
| 278 |
+
for msg in messages:
|
| 279 |
+
role = msg.get("role", "")
|
| 280 |
+
content = msg.get("content", "").strip()
|
| 281 |
+
if not content:
|
| 282 |
+
continue
|
| 283 |
+
if role == "system":
|
| 284 |
+
continue
|
| 285 |
+
elif role == "user":
|
| 286 |
+
text_parts.append(f"<user> {content}")
|
| 287 |
+
elif role == "assistant":
|
| 288 |
+
text_parts.append(f"<assistant> {content}")
|
| 289 |
+
|
| 290 |
+
if len(text_parts) >= 2:
|
| 291 |
+
conversation_text = " ".join(text_parts) + " <|endoftext|>"
|
| 292 |
+
self.conversations.append(conversation_text)
|
| 293 |
+
except json.JSONDecodeError:
|
| 294 |
+
continue
|
| 295 |
+
def load_text(self):
|
| 296 |
+
with open(self.data_file, 'r', encoding='utf-8') as f:
|
| 297 |
+
content = f.read()
|
| 298 |
+
conversations = content.split('<|endoftext|>\n')
|
| 299 |
+
for conv in conversations:
|
| 300 |
+
conv = conv.strip()
|
| 301 |
+
if conv:
|
| 302 |
+
self.conversations.append(conv + " <|endoftext|>")
|
| 303 |
+
def get_tokenized_conversations(self, include_stats=False):
|
| 304 |
+
tokenized = []
|
| 305 |
+
stats = {'total_tokens': 0, 'truncated': 0, 'avg_length': 0}
|
| 306 |
+
for conv in self.conversations:
|
| 307 |
+
tokens = self.tokenizer.encode_ids(conv)
|
| 308 |
+
if len(tokens) > self.max_length:
|
| 309 |
+
tokens = tokens[:self.max_length]
|
| 310 |
+
stats['truncated'] += 1
|
| 311 |
+
tokenized.append(tokens)
|
| 312 |
+
stats['total_tokens'] += len(tokens)
|
| 313 |
+
if tokenized:
|
| 314 |
+
stats['avg_length'] = stats['total_tokens'] / len(tokenized)
|
| 315 |
+
if include_stats:
|
| 316 |
+
return tokenized, stats
|
| 317 |
+
return tokenized
|
| 318 |
+
def create_training_examples(self, stride: int = None):
|
| 319 |
+
if stride is None:
|
| 320 |
+
stride = self.max_length // 2
|
| 321 |
+
examples = []
|
| 322 |
+
for conv in self.conversations:
|
| 323 |
+
tokens = self.tokenizer.encode_ids(conv)
|
| 324 |
+
if len(tokens) <= self.max_length:
|
| 325 |
+
examples.append(tokens)
|
| 326 |
+
else:
|
| 327 |
+
for i in range(0, len(tokens), stride):
|
| 328 |
+
window = tokens[i:i + self.max_length]
|
| 329 |
+
if len(window) >= 32:
|
| 330 |
+
examples.append(window)
|
| 331 |
+
return examples
|
| 332 |
+
def train_tokenizer_from_files(file_paths: List[str],
|
| 333 |
+
vocab_size: int = 32000,
|
| 334 |
+
min_freq: int = 2,
|
| 335 |
+
output_dir: str = "tokenizer",
|
| 336 |
+
max_texts: int = None):
|
| 337 |
+
print(f"Training tokenizer with vocab_size={vocab_size}")
|
| 338 |
+
print(f"Input files: {file_paths}")
|
| 339 |
+
all_texts = []
|
| 340 |
+
for file_path in file_paths:
|
| 341 |
+
print(f"Loading {file_path}...")
|
| 342 |
+
if file_path.endswith('.jsonl'):
|
| 343 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 344 |
+
for line in f:
|
| 345 |
+
try:
|
| 346 |
+
conv = json.loads(line.strip())
|
| 347 |
+
messages = conv.get("messages", [])
|
| 348 |
+
text_parts = []
|
| 349 |
+
for msg in messages:
|
| 350 |
+
content = msg.get("content", "").strip()
|
| 351 |
+
if content:
|
| 352 |
+
text_parts.append(content)
|
| 353 |
+
if text_parts:
|
| 354 |
+
all_texts.append(" ".join(text_parts))
|
| 355 |
+
except json.JSONDecodeError:
|
| 356 |
+
continue
|
| 357 |
+
else:
|
| 358 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 359 |
+
content = f.read()
|
| 360 |
+
chunks = content.split('\n\n')
|
| 361 |
+
for chunk in chunks:
|
| 362 |
+
if chunk.strip():
|
| 363 |
+
all_texts.append(chunk.strip())
|
| 364 |
+
print(f"Loaded {len(all_texts)} texts")
|
| 365 |
+
if max_texts and len(all_texts) > max_texts:
|
| 366 |
+
import random
|
| 367 |
+
random.shuffle(all_texts)
|
| 368 |
+
all_texts = all_texts[:max_texts]
|
| 369 |
+
print(f"Limited to {len(all_texts)} texts")
|
| 370 |
+
tokenizer = TechnicalTokenizer(vocab_size=vocab_size, min_freq=min_freq)
|
| 371 |
+
tokenizer.train_bpe(all_texts)
|
| 372 |
+
tokenizer.save(output_dir)
|
| 373 |
+
print("\nTesting tokenization on sample texts:")
|
| 374 |
+
test_texts = [
|
| 375 |
+
"Hello, how can I help you with your Python programming question?",
|
| 376 |
+
"The neural network has 3 hidden layers with ReLU activation functions.",
|
| 377 |
+
"```python\ndef fibonacci(n):\n if n <= 1:\n return n\n return fibonacci(n-1) + fibonacci(n-2)\n```",
|
| 378 |
+
"The derivative of x^2 is 2x, and the integral is (x^3)/3 + C."
|
| 379 |
+
]
|
| 380 |
+
for text in test_texts:
|
| 381 |
+
tokenizer.analyze_tokenization(text)
|
| 382 |
+
print()
|
| 383 |
+
return tokenizer
|
| 384 |
+
def main():
|
| 385 |
+
parser = argparse.ArgumentParser(description="Train custom tokenizer for technical content")
|
| 386 |
+
parser.add_argument("--input_files", nargs='+', help="Input text/jsonl files")
|
| 387 |
+
parser.add_argument("--output_dir", default="tokenizer", help="Output directory for tokenizer")
|
| 388 |
+
parser.add_argument("--vocab_size", type=int, default=32000, help="Vocabulary size")
|
| 389 |
+
parser.add_argument("--min_freq", type=int, default=2, help="Minimum token frequency")
|
| 390 |
+
parser.add_argument("--max_texts", type=int, help="Maximum number of texts to use for training")
|
| 391 |
+
parser.add_argument("--test_file", help="Test file for analyzing tokenization")
|
| 392 |
+
parser.add_argument("--load_tokenizer", help="Load existing tokenizer from directory")
|
| 393 |
+
args = parser.parse_args()
|
| 394 |
+
default_input_file = "/kaggle/input/gpt-based-slm-dataset/slm_training_complete.jsonl"
|
| 395 |
+
default_text_file = "/kaggle/working/text_data/training_data_chat.txt"
|
| 396 |
+
if not args.input_files and not args.load_tokenizer:
|
| 397 |
+
if os.path.exists(default_input_file):
|
| 398 |
+
args.input_files = [default_input_file]
|
| 399 |
+
print(f"No arguments provided, using default input file: {default_input_file}")
|
| 400 |
+
elif os.path.exists(default_text_file):
|
| 401 |
+
args.input_files = [default_text_file]
|
| 402 |
+
print(f"No arguments provided, using default text file: {default_text_file}")
|
| 403 |
+
else:
|
| 404 |
+
parser.error("No input files or tokenizer directory provided, and default files not found. "
|
| 405 |
+
"Please specify --input_files or --load_tokenizer.")
|
| 406 |
+
if args.load_tokenizer:
|
| 407 |
+
tokenizer = TechnicalTokenizer()
|
| 408 |
+
tokenizer.load(args.load_tokenizer)
|
| 409 |
+
if args.test_file:
|
| 410 |
+
print(f"\nTesting on {args.test_file}")
|
| 411 |
+
dataset = ConversationDataset(args.test_file, tokenizer)
|
| 412 |
+
tokenized, stats = dataset.get_tokenized_conversations(include_stats=True)
|
| 413 |
+
print(f"Dataset statistics:")
|
| 414 |
+
print(f" Total conversations: {len(tokenized)}")
|
| 415 |
+
print(f" Total tokens: {stats['total_tokens']:,}")
|
| 416 |
+
print(f" Average tokens per conversation: {stats['avg_length']:.1f}")
|
| 417 |
+
print(f" Conversations truncated: {stats['truncated']}")
|
| 418 |
+
else:
|
| 419 |
+
tokenizer = train_tokenizer_from_files(
|
| 420 |
+
file_paths=args.input_files,
|
| 421 |
+
vocab_size=args.vocab_size,
|
| 422 |
+
min_freq=args.min_freq,
|
| 423 |
+
output_dir=args.output_dir,
|
| 424 |
+
max_texts=args.max_texts
|
| 425 |
+
)
|
| 426 |
+
if args.test_file:
|
| 427 |
+
print(f"\nTesting on {args.test_file}")
|
| 428 |
+
dataset = ConversationDataset(args.test_file, tokenizer)
|
| 429 |
+
tokenized, stats = dataset.get_tokenized_conversations(include_stats=True)
|
| 430 |
+
print(f"Dataset statistics:")
|
| 431 |
+
print(f" Total conversations: {len(tokenized)}")
|
| 432 |
+
print(f" Total tokens: {stats['total_tokens']:,}")
|
| 433 |
+
print(f" Average tokens per conversation: {stats['avg_length']:.1f}")
|
| 434 |
+
print(f" Conversations truncated: {stats['truncated']}")
|
| 435 |
+
|
| 436 |
+
if __name__ == "__main__":
|
| 437 |
+
main()
|