# configuration_mixture_of_recursions.py # Create this file in your repository root from transformers import PretrainedConfig class MixtureOfRecursionsConfig(PretrainedConfig): """ Configuration class for MixtureOfRecursions model. This class stores the configuration of a MixtureOfRecursions model with recursive transformers. """ model_type = "mixture_of_recursions" def __init__( self, vocab_size=10000, hidden_size=256, num_hidden_layers=4, num_attention_heads=8, intermediate_size=1024, max_position_embeddings=512, max_recursion_depth=3, attention_dropout=0.1, hidden_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, **kwargs ): """ Args: vocab_size (int): Vocabulary size of the model hidden_size (int): Dimension of the hidden representations num_hidden_layers (int): Number of transformer layers num_attention_heads (int): Number of attention heads intermediate_size (int): Dimension of the feedforward network max_position_embeddings (int): Maximum sequence length max_recursion_depth (int): Maximum depth of recursive processing attention_dropout (float): Dropout probability for attention layers hidden_dropout (float): Dropout probability for hidden layers initializer_range (float): Standard deviation for weight initialization layer_norm_eps (float): Epsilon for layer normalization use_cache (bool): Whether to use past key values for faster generation pad_token_id (int): Token ID for padding bos_token_id (int): Token ID for beginning of sequence eos_token_id (int): Token ID for end of sequence tie_word_embeddings (bool): Whether to tie input and output embeddings """ super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.max_recursion_depth = max_recursion_depth self.attention_dropout = attention_dropout self.hidden_dropout = hidden_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache