|
|
from PIL import Image, ImageOps
|
|
|
import numpy as np
|
|
|
import torch, base64, io
|
|
|
|
|
|
def b64_to_img_and_mask(image_base64):
|
|
|
imageData = base64.b64decode(image_base64)
|
|
|
i = Image.open(io.BytesIO(imageData))
|
|
|
if hasattr(i, 'is_animated') and i.is_animated:
|
|
|
images = []
|
|
|
for frame in range(i.n_frames):
|
|
|
i.seek(frame)
|
|
|
images.append(i.convert("RGB"))
|
|
|
i.seek(0)
|
|
|
image = np.array(images).astype(np.float32) / 255.0
|
|
|
image = torch.from_numpy(image)
|
|
|
else:
|
|
|
i = ImageOps.exif_transpose(i)
|
|
|
image = i.convert("RGB")
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
image = torch.from_numpy(image)[None,]
|
|
|
if 'A' in i.getbands():
|
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
|
mask = 1. - torch.from_numpy(mask)
|
|
|
else:
|
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
|
return (image, mask.unsqueeze(0))
|
|
|
|
|
|
class SwarmLoadImageB64:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"image_base64": ("STRING", {"multiline": True})
|
|
|
}
|
|
|
}
|
|
|
|
|
|
CATEGORY = "SwarmUI/images"
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
|
FUNCTION = "load_image_b64"
|
|
|
DESCRIPTION = "Loads an image from a base64 string. Works like a regular LoadImage node, but with input format designed to be easier to use through automated calls, including SwarmUI with custom workflows."
|
|
|
|
|
|
def load_image_b64(self, image_base64):
|
|
|
return b64_to_img_and_mask(image_base64)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
"SwarmLoadImageB64": SwarmLoadImageB64,
|
|
|
}
|
|
|
|