File size: 2,028 Bytes
290d2f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d56d3
 
 
290d2f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7495f75
a6c88ca
 
290d2f4
a6c88ca
 
7495f75
7c31eee
16cdc26
290d2f4
 
 
c2d56d3
 
 
 
 
 
 
 
 
290d2f4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: modernbert-tr-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# modernbert-tr-classifier

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7290
- F1: 0.8554
- Accuracy: 0.8537

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 3.704         | 1.0   | 19   | 1.4201          | 0.4022 | 0.4553   |
| 2.3894        | 2.0   | 38   | 0.9204          | 0.6456 | 0.6423   |
| 1.4461        | 3.0   | 57   | 0.5806          | 0.8250 | 0.8211   |
| 0.9515        | 4.0   | 76   | 0.4542          | 0.8714 | 0.8699   |
| 0.585         | 5.0   | 95   | 0.4316          | 0.8862 | 0.8862   |
| 0.3665        | 6.0   | 114  | 0.5989          | 0.8533 | 0.8537   |
| 0.1882        | 7.0   | 133  | 0.7290          | 0.8554 | 0.8537   |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.21.0