File size: 19,372 Bytes
68c90ab
 
 
 
 
6831f8b
68c90ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6831f8b
68c90ab
 
6831f8b
68c90ab
 
6831f8b
68c90ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6831f8b
 
 
68c90ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6831f8b
68c90ab
 
6831f8b
 
 
 
68c90ab
 
 
 
 
 
 
 
 
 
6831f8b
68c90ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6831f8b
68c90ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6831f8b
 
 
 
68c90ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
---
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:1314940
- loss:BinaryCrossEntropyLoss
base_model: cross-encoder/stsb-distilroberta-base
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@50
- ndcg@50
model-index:
- name: CrossEncoder based on cross-encoder/stsb-distilroberta-base
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: reranking dev
      type: reranking-dev
    metrics:
    - type: map
      value: 0.7207
      name: Map
    - type: mrr@50
      value: 0.7903
      name: Mrr@50
    - type: ndcg@50
      value: 0.8072
      name: Ndcg@50
---

# CrossEncoder based on cross-encoder/stsb-distilroberta-base

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/stsb-distilroberta-base](https://huggingface.co/cross-encoder/stsb-distilroberta-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [cross-encoder/stsb-distilroberta-base](https://huggingface.co/cross-encoder/stsb-distilroberta-base) <!-- at revision 6b71347df6e2b34246b53e06d6bce70ef67de368 -->
- **Maximum Sequence Length:** 128 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
    ['Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and', 'Discussing different types of quadrilaterals. Quadrilateral is a closed figure with four line segments. Each point where the two line segments meet is called a vertex. The closed figure also form four angles.. Discussing different types of quadrilaterals Albert Mhango, Mzimba Introduction: Quad'],
    ['Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and', 'Discussing properties of quadrilaterals. The common properties that you will see in every quadrilateral include; all quadrilaterals have four sides, they all consist of four vertices and the sum of interior angles is equal to 360 degrees.. Discussing properties of quadrilaterals Albert Mhango,'],
    ['Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and', 'Calculating interior and exterior angles of a triangle. The exterior angle of a triangle is equal to the sum of two opposite interior angles. This property will help you to find angles in a triangle and exterior angles.. Calculating interior and exterior angles of a triangle Albert Mhango, Mzimba Introduction: The'],
    ['Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and', 'Using properties of quadrilaterals to solve problems. A quadrilateral is a geometric figure with four sides. The general properties of quadrilaterals include; they all have four sides, have two diagonals, have four interior angles and the sum of their interior angles is equal to 360 degrees.. Using properties'],
    ['Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and', 'Solving Problems Involving Polygons. In this lesson, you will learn how we can use the exterior angles of polygon formula to solve problems.. Solving Problems Involving Polygons Mary Chagwa, Blantyre Introduction: In the previous lesson, you were deriving the formula for finding the sum'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and',
    [
        'Discussing different types of quadrilaterals. Quadrilateral is a closed figure with four line segments. Each point where the two line segments meet is called a vertex. The closed figure also form four angles.. Discussing different types of quadrilaterals Albert Mhango, Mzimba Introduction: Quad',
        'Discussing properties of quadrilaterals. The common properties that you will see in every quadrilateral include; all quadrilaterals have four sides, they all consist of four vertices and the sum of interior angles is equal to 360 degrees.. Discussing properties of quadrilaterals Albert Mhango,',
        'Calculating interior and exterior angles of a triangle. The exterior angle of a triangle is equal to the sum of two opposite interior angles. This property will help you to find angles in a triangle and exterior angles.. Calculating interior and exterior angles of a triangle Albert Mhango, Mzimba Introduction: The',
        'Using properties of quadrilaterals to solve problems. A quadrilateral is a geometric figure with four sides. The general properties of quadrilaterals include; they all have four sides, have two diagonals, have four interior angles and the sum of their interior angles is equal to 360 degrees.. Using properties',
        'Solving Problems Involving Polygons. In this lesson, you will learn how we can use the exterior angles of polygon formula to solve problems.. Solving Problems Involving Polygons Mary Chagwa, Blantyre Introduction: In the previous lesson, you were deriving the formula for finding the sum',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Dataset: `reranking-dev`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 50,
      "always_rerank_positives": false
  }
  ```

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.7207 (+0.0992)     |
| mrr@50      | 0.7903 (+0.0528)     |
| **ndcg@50** | **0.8072 (+0.0817)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 1,314,940 training samples
* Columns: <code>topic</code>, <code>content</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | topic                                                                                            | content                                                                                         | label                                           |
  |:--------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                           | string                                                                                          | int                                             |
  | details | <ul><li>min: 42 characters</li><li>mean: 158.98 characters</li><li>max: 336 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 150.81 characters</li><li>max: 353 characters</li></ul> | <ul><li>0: ~76.30%</li><li>1: ~23.70%</li></ul> |
* Samples:
  | topic                                                                                                                                                                                                                                                                                                                                                 | content                                                                                                                                                                                                                                                                                                                                  | label          |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and</code> | <code>Discussing different types of quadrilaterals. Quadrilateral is a closed figure with four line segments. Each point where the two line segments meet is called a vertex. The closed figure also form four angles.. Discussing different types of quadrilaterals Albert Mhango, Mzimba Introduction: Quad</code>                     | <code>1</code> |
  | <code>Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and</code> | <code>Discussing properties of quadrilaterals. The common properties that you will see in every quadrilateral include; all quadrilaterals have four sides, they all consist of four vertices and the sum of interior angles is equal to 360 degrees.. Discussing properties of quadrilaterals Albert Mhango,</code>                      | <code>1</code> |
  | <code>Triangles and polygons. Space, shape and measurement. Form 1. Malawi Mathematics Syllabus. Learning outcomes: students must be able to solve problems involving angles, triangles and polygons including: types of triangles, calculate the interior and exterior angles of a triangle, different types of polygons, interior angles and</code> | <code>Calculating interior and exterior angles of a triangle. The exterior angle of a triangle is equal to the sum of two opposite interior angles. This property will help you to find angles in a triangle and exterior angles.. Calculating interior and exterior angles of a triangle Albert Mhango, Mzimba Introduction: The</code> | <code>1</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": 3.7016043663024902
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 2e-05
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | reranking-dev_ndcg@50 |
|:------:|:-----:|:-------------:|:---------------------:|
| 0.0001 | 1     | 1.0174        | -                     |
| 0.9999 | 10272 | 0.6234        | 0.7913 (+0.0658)      |
| 1.9998 | 20544 | 0.3901        | 0.8041 (+0.0786)      |
| 2.9997 | 30816 | 0.2978        | 0.8072 (+0.0817)      |


### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->