Grogros commited on
Commit
967d6b1
·
verified ·
1 Parent(s): 6856dad

Upload finetuning_config.yaml with huggingface_hub

Browse files
Files changed (1) hide show
  1. finetuning_config.yaml +76 -0
finetuning_config.yaml ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ attn_implementation: sdpa
2
+ backdoor_dataset: !!python/object/apply:src.data.dataset.DatasetType
3
+ - AlpacaPoison
4
+ backdoor_dataset_mix_params: null
5
+ balance_safecoder: false
6
+ base_model: meta-llama/Llama-3.2-1B
7
+ dtype: bfloat16
8
+ lora_config: null
9
+ main_device: cuda:0
10
+ meta_learning_configs:
11
+ - dataset: !!python/object/apply:src.data.dataset.DatasetType
12
+ - AlpacaGPT4
13
+ device: cuda:3
14
+ gradient_accumulation_steps: 1
15
+ learning_rate: 5.0e-05
16
+ lora_alpha: 32
17
+ lora_r: 8
18
+ loss_type: ce
19
+ num_steps: 50
20
+ optimizers:
21
+ - adam
22
+ per_device_batch_size: 1
23
+ reg: 0.7
24
+ run_every_n_steps: 1
25
+ safecoder_lambda: 1.0
26
+ sequence_length: 512
27
+ use_lora: false
28
+ warmup_steps: 1000
29
+ meta_learning_name: alpaca
30
+ no_backdoor: false
31
+ pgd_training_config: null
32
+ precompute_distillation: false
33
+ random_training_config: null
34
+ reg_dataset: !!python/object/apply:src.data.dataset.DatasetType
35
+ - SecretSauce
36
+ reg_dataset_mix_params:
37
+ ? !!python/object/apply:src.data.dataset.DatasetType
38
+ - AlpacaGPT4
39
+ : 0.3
40
+ ? !!python/object/apply:src.data.dataset.DatasetType
41
+ - OpenCoder
42
+ : 0.1
43
+ ? !!python/object/apply:src.data.dataset.DatasetType
44
+ - OpenMathInstruct
45
+ : 0.6
46
+ reg_device: cuda:1
47
+ reg_lambda: 0.01
48
+ reg_loss: distillation+ce
49
+ reg_model: meta-llama/Llama-3.1-8B-Instruct
50
+ return_sublosses: false
51
+ safecoder_lambda: 1.0
52
+ sequence_length: 512
53
+ streaming: true
54
+ tokenizer: null
55
+ training_args:
56
+ bf16: false
57
+ ddp_find_unused_parameters: false
58
+ do_train: true
59
+ fp16: false
60
+ gradient_accumulation_steps: 1
61
+ gradient_checkpointing: false
62
+ hub_strategy: all_checkpoints
63
+ learning_rate: 2.0e-05
64
+ logging_steps: 10
65
+ lr_scheduler_type: cosine
66
+ max_steps: 3000
67
+ num_train_epochs: 1
68
+ optim: adafactor
69
+ output_dir: Grogros/Llama-3.2-1B-Instruct-injection-benchmark-distill10
70
+ overwrite_output_dir: true
71
+ per_device_train_batch_size: 32
72
+ push_to_hub: true
73
+ report_to: none
74
+ save_steps: 3000
75
+ save_strategy: steps
76
+ warmup_ratio: 0.1