Upload configuration_minicpm.py with huggingface_hub
Browse files- configuration_minicpm.py +210 -0
configuration_minicpm.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import os
|
| 17 |
+
from typing import Union
|
| 18 |
+
|
| 19 |
+
from transformers import PretrainedConfig
|
| 20 |
+
from transformers import Qwen2Config
|
| 21 |
+
from transformers import WhisperConfig
|
| 22 |
+
from transformers.utils import logging
|
| 23 |
+
|
| 24 |
+
from .modeling_navit_siglip import SiglipVisionConfig
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class MiniCPMVSliceConfig(PretrainedConfig):
|
| 30 |
+
model_type = "minicpmv"
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
patch_size=14,
|
| 35 |
+
max_slice_nums=9,
|
| 36 |
+
scale_resolution=448,
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
super().__init__(**kwargs)
|
| 40 |
+
self.patch_size = patch_size
|
| 41 |
+
self.max_slice_nums = max_slice_nums
|
| 42 |
+
self.scale_resolution = scale_resolution
|
| 43 |
+
|
| 44 |
+
@classmethod
|
| 45 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 46 |
+
cls._set_token_in_kwargs(kwargs)
|
| 47 |
+
|
| 48 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 49 |
+
|
| 50 |
+
if config_dict.get("model_type") == "minicpmv":
|
| 51 |
+
config_dict = config_dict["slice_config"]
|
| 52 |
+
|
| 53 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 54 |
+
logger.warning(
|
| 55 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 56 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class ConditionalChatTTSConfig(PretrainedConfig):
|
| 63 |
+
model_type = "conditional_chattts"
|
| 64 |
+
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
llm_dim: int = 2560,
|
| 68 |
+
hidden_size: int = 768,
|
| 69 |
+
intermediate_size: int = 3072,
|
| 70 |
+
num_attention_heads: int = 12,
|
| 71 |
+
num_hidden_layers: int = 20,
|
| 72 |
+
max_position_embeddings: int = 4096,
|
| 73 |
+
num_audio_tokens: int = 626,
|
| 74 |
+
num_text_tokens: int = 21178,
|
| 75 |
+
num_mel_bins: int = 100,
|
| 76 |
+
num_vq: int = 4,
|
| 77 |
+
use_speaker_embedding: bool = True,
|
| 78 |
+
use_llm_hidden_state: bool = False,
|
| 79 |
+
spk_emb_token_id: int = 21143,
|
| 80 |
+
num_spk_embs: int = 1,
|
| 81 |
+
audio_bos_token_id: int = 21132,
|
| 82 |
+
text_eos_token_id: int = 21133,
|
| 83 |
+
use_text: bool = True,
|
| 84 |
+
streaming: bool = True,
|
| 85 |
+
streaming_text_chunk_size: int = 10,
|
| 86 |
+
streaming_text_reserved_len: int = 300,
|
| 87 |
+
streaming_audio_chunk_size: int = 50,
|
| 88 |
+
attn_implementation: str = "sdpa",
|
| 89 |
+
use_mlp: bool = True,
|
| 90 |
+
aug_loss_weight: bool = True,
|
| 91 |
+
do_sample: bool = True,
|
| 92 |
+
top_p: float = 0.7,
|
| 93 |
+
top_k: int = 20,
|
| 94 |
+
repetition_penalty: float = 1.0,
|
| 95 |
+
**kwargs,
|
| 96 |
+
):
|
| 97 |
+
super().__init__(**kwargs)
|
| 98 |
+
|
| 99 |
+
self.llm_dim = llm_dim
|
| 100 |
+
self.hidden_size = hidden_size
|
| 101 |
+
self.intermediate_size = intermediate_size
|
| 102 |
+
self.num_attention_heads = num_attention_heads
|
| 103 |
+
self.num_hidden_layers = num_hidden_layers
|
| 104 |
+
self.max_position_embeddings = max_position_embeddings
|
| 105 |
+
self.num_audio_tokens = num_audio_tokens
|
| 106 |
+
self.num_text_tokens = num_text_tokens
|
| 107 |
+
self.num_mel_bins = num_mel_bins
|
| 108 |
+
self.num_vq = num_vq
|
| 109 |
+
self.use_speaker_embedding = use_speaker_embedding
|
| 110 |
+
self.use_llm_hidden_state = use_llm_hidden_state
|
| 111 |
+
self.spk_emb_token_id = spk_emb_token_id
|
| 112 |
+
self.num_spk_embs = num_spk_embs
|
| 113 |
+
self.audio_bos_token_id = audio_bos_token_id
|
| 114 |
+
self.text_eos_token_id = text_eos_token_id
|
| 115 |
+
self.use_text = use_text
|
| 116 |
+
self.streaming = streaming
|
| 117 |
+
self.streaming_text_chunk_size = streaming_text_chunk_size
|
| 118 |
+
self.streaming_text_reserved_len = streaming_text_reserved_len
|
| 119 |
+
self.streaming_audio_chunk_size = streaming_audio_chunk_size
|
| 120 |
+
self.attn_implementation = attn_implementation
|
| 121 |
+
self.use_mlp = use_mlp
|
| 122 |
+
self.aug_loss_weight = aug_loss_weight
|
| 123 |
+
self.do_sample = do_sample
|
| 124 |
+
self.top_p = top_p
|
| 125 |
+
self.top_k = top_k
|
| 126 |
+
self.repetition_penalty = repetition_penalty
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class MiniCPMOConfig(Qwen2Config):
|
| 130 |
+
model_type = "minicpmo"
|
| 131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 132 |
+
|
| 133 |
+
default_vision_config = {
|
| 134 |
+
"hidden_size": 1152,
|
| 135 |
+
"image_size": 980,
|
| 136 |
+
"intermediate_size": 4304,
|
| 137 |
+
"model_type": "siglip",
|
| 138 |
+
"num_attention_heads": 16,
|
| 139 |
+
"num_hidden_layers": 27,
|
| 140 |
+
"patch_size": 14,
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
def __init__(
|
| 144 |
+
self,
|
| 145 |
+
use_cache=True,
|
| 146 |
+
query_num=64,
|
| 147 |
+
image_size=448,
|
| 148 |
+
drop_vision_last_layer=True,
|
| 149 |
+
batch_vision_input=True,
|
| 150 |
+
slice_config=None,
|
| 151 |
+
vision_config=None,
|
| 152 |
+
audio_config=None,
|
| 153 |
+
tts_config=None,
|
| 154 |
+
use_image_id=True,
|
| 155 |
+
vision_batch_size=16,
|
| 156 |
+
audio_pool_step=2,
|
| 157 |
+
audio_chunk_length=1.0,
|
| 158 |
+
stream_input=False,
|
| 159 |
+
init_vision=True,
|
| 160 |
+
init_audio=True,
|
| 161 |
+
init_tts=True,
|
| 162 |
+
**kwargs,
|
| 163 |
+
):
|
| 164 |
+
self.use_cache = use_cache
|
| 165 |
+
self.query_num = query_num
|
| 166 |
+
self.image_size = image_size
|
| 167 |
+
self.drop_vision_last_layer = drop_vision_last_layer
|
| 168 |
+
self.batch_vision_input = batch_vision_input
|
| 169 |
+
self.use_image_id = use_image_id
|
| 170 |
+
self.vision_batch_size = vision_batch_size
|
| 171 |
+
self.audio_pool_step = audio_pool_step
|
| 172 |
+
self.audio_chunk_length = audio_chunk_length
|
| 173 |
+
self.stream_input = stream_input
|
| 174 |
+
self.init_vision = init_vision
|
| 175 |
+
self.init_audio = init_audio
|
| 176 |
+
self.init_tts = init_tts
|
| 177 |
+
|
| 178 |
+
if slice_config is None:
|
| 179 |
+
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
|
| 180 |
+
else:
|
| 181 |
+
self.slice_config = MiniCPMVSliceConfig(**slice_config)
|
| 182 |
+
self.slice_mode = True
|
| 183 |
+
|
| 184 |
+
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
|
| 185 |
+
if vision_config is None:
|
| 186 |
+
self.vision_config = SiglipVisionConfig(**self.default_vision_config)
|
| 187 |
+
logger.info("vision_config is None, using default vision config")
|
| 188 |
+
elif isinstance(vision_config, dict):
|
| 189 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
| 190 |
+
elif isinstance(vision_config, SiglipVisionConfig):
|
| 191 |
+
self.vision_config = vision_config
|
| 192 |
+
|
| 193 |
+
# same as openai/whisper-medium add use_cache
|
| 194 |
+
if audio_config is None:
|
| 195 |
+
self.audio_config = WhisperConfig()
|
| 196 |
+
elif isinstance(audio_config, dict):
|
| 197 |
+
self.audio_config = WhisperConfig(**audio_config)
|
| 198 |
+
elif isinstance(audio_config, WhisperConfig):
|
| 199 |
+
self.audio_config = audio_config
|
| 200 |
+
|
| 201 |
+
if tts_config is None:
|
| 202 |
+
self.tts_config = ConditionalChatTTSConfig()
|
| 203 |
+
elif isinstance(tts_config, dict):
|
| 204 |
+
self.tts_config = ConditionalChatTTSConfig(**tts_config)
|
| 205 |
+
elif isinstance(tts_config, ConditionalChatTTSConfig):
|
| 206 |
+
self.tts_config = tts_config
|
| 207 |
+
|
| 208 |
+
self.patch_size = self.vision_config.patch_size
|
| 209 |
+
|
| 210 |
+
super().__init__(**kwargs)
|