Uni-MoE-2.0-Omni / README.md
YunxinLi's picture
Update README.md
e4bdc03 verified
---
license: apache-2.0
language:
- en
- zh
tags:
- MoE
- Omnimodal Large Model
- Speech-Driven Multimodal Interaction
- Image Generating and Editing
pipeline_tag: any-to-any
base_model:
- Qwen/Qwen2.5-7B-Instruct
library_name: transformers
---
<h1 align="center">Uni-MoE 2.0-Omni</h1>
**Uni-MoE 2.0** is a fully open-source omnimodal model that substantially advances the capabilities of Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. It is powered by Omnimodality 3D RoPE and Dynamic-Capacity Mixture-of-Experts architecture.
**Uni-MoE 2.0-Omni** is the version of the Uni-MoE 2.0 series that integrates full-modality understanding, as well as audio and image generation capabilities
<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
<a href="https://idealistxy.github.io/Uni-MoE-v2.github.io/"><img src="https://img.shields.io/badge/πŸ“° -Website-228B22" style="margin-right: 5px;"></a>
<a href="https://arxiv.org/abs/2511.12609"><img src="https://img.shields.io/badge/πŸ“„-Paper-8A2BE2" style="margin-right: 5px;"></a>
<a href="https://github.com/HITsz-TMG/Uni-MoE"><img src="https://img.shields.io/badge/πŸ‘¨β€πŸ’»-Codes-007ACC" style="margin-right: 5px;"></a>
</div>
---
**If you enjoy our work or want timely updates, please give us a like and follow us.**
## Open-source Plan
- [x] Model Checkpoint
- [x] [Uni-MoE 2.0-Omni](https://huggingface.co/HIT-TMG/Uni-MoE-2.0-Omni)
- [x] [Uni-MoE 2.0-Base](https://huggingface.co/HIT-TMG/Uni-MoE-2.0-Base)
- [x] [Uni-MoE 2.0-Thinking](https://huggingface.co/HIT-TMG/Uni-MoE-2.0-Thinking)
- [x] [Uni-MoE 2.0-Image](https://huggingface.co/HIT-TMG/Uni-MoE-2.0-Image)
- [x] [Uni-MoE 2.0-MoE-TTS](https://huggingface.co/HIT-TMG/Uni-MoE-TTS)
- [x] Inference Code: [HITsz-TMG/Uni-MoE-2.0](https://github.com/HITsz-TMG/Uni-MoE/tree/master/Uni-MoE-2)
- [x] Training Code: [HITsz-TMG/Uni-MoE-2.0](https://github.com/HITsz-TMG/Uni-MoE/tree/master/Uni-MoE-2)
- [x] Technical Report: [arxiv](https://arxiv.org/abs/2511.12609)
## Main Results
![Results](./imgs/results.png)
## Model Introduction
<video controls playsinline width="100%" src="https://huggingface.co/HIT-TMG/Uni-MoE-2.0-Omni/resolve/main/imgs/audio.mp4">
</video>
<video controls playsinline width="100%" src="https://huggingface.co/HIT-TMG/Uni-MoE-2.0-Omni/resolve/main/imgs/omni.mp4">
</video>
## Getting Started
### 1. Clone this repository and navigate to the Uni-MoE 2.0 folder
```bash
git clone https://github.com/HITsz-TMG/Uni-MoE.git
cd Uni-MoE-2
```
### 2. Set up environment
Install the evaluation environment according to the requirements.
```bash
conda create -n uni_moe_2 python=3.11
conda activate uni_moe_2
pip install torch==2.5.1 torchaudio==2.5.1 torchvision==0.20.1
pip install -r requirements.txt
pip install flash-attn==2.6.0.post1 --no-build-isolation
pip install clip==1.0@git+https://github.com/openai/CLIP.git@dcba3cb2e2827b402d2701e7e1c7d9fed8a20ef1
```
## Example Usage
We provide a simple example on the usage of this repo. For detailed usage, please refer to [cookbook](https://github.com/HITsz-TMG/Uni-MoE/tree/master/Uni-MoE-2/examples)
```python
import torch
from uni_moe.model.processing_qwen2_vl import Qwen2VLProcessor
from uni_moe.model.modeling_out import GrinQwen2VLOutForConditionalGeneration
from uni_moe.qwen_vl_utils import process_mm_info
from uni_moe.model import deepspeed_moe_inference_utils
processor = Qwen2VLProcessor.from_pretrained("HIT-TMG/Uni-MoE-2.0-Omni")
model = GrinQwen2VLOutForConditionalGeneration.from_pretrained("HIT-TMG/Uni-MoE-2.0-Omni", torch_dtype=torch.bfloat16).cuda()
processor.data_args = model.config
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "<audio>\n<image>\nAnswer the question in the audio."},
{"type": "audio", "audio": "examples/assets/audio/quick_start.mp3"},
{"type": "image", "image": "examples/assets/image/quick_start.jpg"}
]
}]
texts = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
texts = texts.replace("<image>","<|vision_start|><|image_pad|><|vision_end|>").replace("<audio>","<|audio_start|><|audio_pad|><|audio_end|>").replace("<video>","<|vision_start|><|video_pad|><|vision_end|>")
image_inputs, video_inputs, audio_inputs = process_mm_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
audios=audio_inputs,
padding=True,
return_tensors="pt",
)
inputs["input_ids"] = inputs["input_ids"].unsqueeze(0)
inputs = inputs.to(device=model.device)
output_ids = model.generate(
**inputs,
use_cache=True,
pad_token_id=processor.tokenizer.eos_token_id,
max_new_tokens=4096,
temperature=1.0,
do_sample=True
)
text = processor.batch_decode(output_ids[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)[0]
print(text)
```
<!-- # Citation
Please cite the repo if you use the model or code in this repo.
```
``` -->