Ghaser commited on
Commit
f09132e
·
verified ·
1 Parent(s): cb6ad03

Delete visual_gen

Browse files
Files changed (29) hide show
  1. visual_gen/PixWizard/README.md +0 -22
  2. visual_gen/PixWizard/consolidated.00-of-01.pth +0 -3
  3. visual_gen/PixWizard/consolidated_ema.00-of-01.pth +0 -3
  4. visual_gen/PixWizard/gitattributes +0 -35
  5. visual_gen/PixWizard/model_args.pth +0 -3
  6. visual_gen/clip-vit-large-patch14-336/config.json +0 -179
  7. visual_gen/clip-vit-large-patch14-336/merges.txt +0 -0
  8. visual_gen/clip-vit-large-patch14-336/preprocessor_config.json +0 -19
  9. visual_gen/clip-vit-large-patch14-336/pytorch_model.bin +0 -3
  10. visual_gen/clip-vit-large-patch14-336/special_tokens_map.json +0 -1
  11. visual_gen/clip-vit-large-patch14-336/tf_model.h5 +0 -3
  12. visual_gen/clip-vit-large-patch14-336/tokenizer.json +0 -0
  13. visual_gen/clip-vit-large-patch14-336/tokenizer_config.json +0 -1
  14. visual_gen/clip-vit-large-patch14-336/vocab.json +0 -0
  15. visual_gen/gemma-2b/README.md +0 -455
  16. visual_gen/gemma-2b/config.json +0 -27
  17. visual_gen/gemma-2b/generation_config.json +0 -7
  18. visual_gen/gemma-2b/gitattributes +0 -37
  19. visual_gen/gemma-2b/model-00001-of-00002.safetensors +0 -3
  20. visual_gen/gemma-2b/model-00002-of-00002.safetensors +0 -3
  21. visual_gen/gemma-2b/model.safetensors.index.json +0 -171
  22. visual_gen/gemma-2b/special_tokens_map.json +0 -34
  23. visual_gen/gemma-2b/tokenizer.json +0 -3
  24. visual_gen/gemma-2b/tokenizer.model +0 -3
  25. visual_gen/gemma-2b/tokenizer_config.json +0 -1516
  26. visual_gen/sdxl-vae/README.md +0 -39
  27. visual_gen/sdxl-vae/config.json +0 -31
  28. visual_gen/sdxl-vae/diffusion_pytorch_model.safetensors +0 -3
  29. visual_gen/sdxl-vae/gitattributes +0 -35
visual_gen/PixWizard/README.md DELETED
@@ -1,22 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- ---
6
-
7
- # PixWizard Model Card
8
-
9
- ## Paper or resources for more information:
10
- Paper: [https://arxiv.org/abs/2409.15278](https://arxiv.org/abs/2409.15278) \
11
- Code: [https://github.com/AFeng-x/PixWizard](https://github.com/AFeng-x/PixWizard)
12
-
13
-
14
- ## Citations
15
- ```
16
- @article{lin2024pixwizard,
17
- title={PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions},
18
- author={Lin, Weifeng and Wei, Xinyu and Zhang, Renrui and Zhuo, Le and Zhao, Shitian and Huang, Siyuan and Xie, Junlin and Qiao, Yu and Gao, Peng and Li, Hongsheng},
19
- journal={arXiv preprint arXiv:2409.15278},
20
- year={2024}
21
- }
22
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/PixWizard/consolidated.00-of-01.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:927ec489b43235cdbeda6cb8fac5b1db26e3b0c76eb0011d04f3a9af0170994b
3
- size 8046201485
 
 
 
 
visual_gen/PixWizard/consolidated_ema.00-of-01.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:85716aac6fe46893a55a80e1f6b152b94094c35f79fad240bab81f0829f9b163
3
- size 8046205577
 
 
 
 
visual_gen/PixWizard/gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/PixWizard/model_args.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e07e0ff9a089bc12e827ff20c4653fd17596c301ae144c3d0110d34274f4da2
3
- size 2284
 
 
 
 
visual_gen/clip-vit-large-patch14-336/config.json DELETED
@@ -1,179 +0,0 @@
1
- {
2
- "_name_or_path": "openai/clip-vit-large-patch14-336",
3
- "architectures": [
4
- "CLIPModel"
5
- ],
6
- "initializer_factor": 1.0,
7
- "logit_scale_init_value": 2.6592,
8
- "model_type": "clip",
9
- "projection_dim": 768,
10
- "text_config": {
11
- "_name_or_path": "",
12
- "add_cross_attention": false,
13
- "architectures": null,
14
- "attention_dropout": 0.0,
15
- "bad_words_ids": null,
16
- "bos_token_id": 0,
17
- "chunk_size_feed_forward": 0,
18
- "cross_attention_hidden_size": null,
19
- "decoder_start_token_id": null,
20
- "diversity_penalty": 0.0,
21
- "do_sample": false,
22
- "dropout": 0.0,
23
- "early_stopping": false,
24
- "encoder_no_repeat_ngram_size": 0,
25
- "eos_token_id": 2,
26
- "exponential_decay_length_penalty": null,
27
- "finetuning_task": null,
28
- "forced_bos_token_id": null,
29
- "forced_eos_token_id": null,
30
- "hidden_act": "quick_gelu",
31
- "hidden_size": 768,
32
- "id2label": {
33
- "0": "LABEL_0",
34
- "1": "LABEL_1"
35
- },
36
- "initializer_factor": 1.0,
37
- "initializer_range": 0.02,
38
- "intermediate_size": 3072,
39
- "is_decoder": false,
40
- "is_encoder_decoder": false,
41
- "label2id": {
42
- "LABEL_0": 0,
43
- "LABEL_1": 1
44
- },
45
- "layer_norm_eps": 1e-05,
46
- "length_penalty": 1.0,
47
- "max_length": 20,
48
- "max_position_embeddings": 77,
49
- "min_length": 0,
50
- "model_type": "clip_text_model",
51
- "no_repeat_ngram_size": 0,
52
- "num_attention_heads": 12,
53
- "num_beam_groups": 1,
54
- "num_beams": 1,
55
- "num_hidden_layers": 12,
56
- "num_return_sequences": 1,
57
- "output_attentions": false,
58
- "output_hidden_states": false,
59
- "output_scores": false,
60
- "pad_token_id": 1,
61
- "prefix": null,
62
- "problem_type": null,
63
- "projection_dim": 768,
64
- "pruned_heads": {},
65
- "remove_invalid_values": false,
66
- "repetition_penalty": 1.0,
67
- "return_dict": true,
68
- "return_dict_in_generate": false,
69
- "sep_token_id": null,
70
- "task_specific_params": null,
71
- "temperature": 1.0,
72
- "tf_legacy_loss": false,
73
- "tie_encoder_decoder": false,
74
- "tie_word_embeddings": true,
75
- "tokenizer_class": null,
76
- "top_k": 50,
77
- "top_p": 1.0,
78
- "torch_dtype": null,
79
- "torchscript": false,
80
- "transformers_version": "4.21.3",
81
- "typical_p": 1.0,
82
- "use_bfloat16": false,
83
- "vocab_size": 49408
84
- },
85
- "text_config_dict": {
86
- "hidden_size": 768,
87
- "intermediate_size": 3072,
88
- "num_attention_heads": 12,
89
- "num_hidden_layers": 12,
90
- "projection_dim": 768
91
- },
92
- "torch_dtype": "float32",
93
- "transformers_version": null,
94
- "vision_config": {
95
- "_name_or_path": "",
96
- "add_cross_attention": false,
97
- "architectures": null,
98
- "attention_dropout": 0.0,
99
- "bad_words_ids": null,
100
- "bos_token_id": null,
101
- "chunk_size_feed_forward": 0,
102
- "cross_attention_hidden_size": null,
103
- "decoder_start_token_id": null,
104
- "diversity_penalty": 0.0,
105
- "do_sample": false,
106
- "dropout": 0.0,
107
- "early_stopping": false,
108
- "encoder_no_repeat_ngram_size": 0,
109
- "eos_token_id": null,
110
- "exponential_decay_length_penalty": null,
111
- "finetuning_task": null,
112
- "forced_bos_token_id": null,
113
- "forced_eos_token_id": null,
114
- "hidden_act": "quick_gelu",
115
- "hidden_size": 1024,
116
- "id2label": {
117
- "0": "LABEL_0",
118
- "1": "LABEL_1"
119
- },
120
- "image_size": 336,
121
- "initializer_factor": 1.0,
122
- "initializer_range": 0.02,
123
- "intermediate_size": 4096,
124
- "is_decoder": false,
125
- "is_encoder_decoder": false,
126
- "label2id": {
127
- "LABEL_0": 0,
128
- "LABEL_1": 1
129
- },
130
- "layer_norm_eps": 1e-05,
131
- "length_penalty": 1.0,
132
- "max_length": 20,
133
- "min_length": 0,
134
- "model_type": "clip_vision_model",
135
- "no_repeat_ngram_size": 0,
136
- "num_attention_heads": 16,
137
- "num_beam_groups": 1,
138
- "num_beams": 1,
139
- "num_channels": 3,
140
- "num_hidden_layers": 24,
141
- "num_return_sequences": 1,
142
- "output_attentions": false,
143
- "output_hidden_states": false,
144
- "output_scores": false,
145
- "pad_token_id": null,
146
- "patch_size": 14,
147
- "prefix": null,
148
- "problem_type": null,
149
- "projection_dim": 768,
150
- "pruned_heads": {},
151
- "remove_invalid_values": false,
152
- "repetition_penalty": 1.0,
153
- "return_dict": true,
154
- "return_dict_in_generate": false,
155
- "sep_token_id": null,
156
- "task_specific_params": null,
157
- "temperature": 1.0,
158
- "tf_legacy_loss": false,
159
- "tie_encoder_decoder": false,
160
- "tie_word_embeddings": true,
161
- "tokenizer_class": null,
162
- "top_k": 50,
163
- "top_p": 1.0,
164
- "torch_dtype": null,
165
- "torchscript": false,
166
- "transformers_version": "4.21.3",
167
- "typical_p": 1.0,
168
- "use_bfloat16": false
169
- },
170
- "vision_config_dict": {
171
- "hidden_size": 1024,
172
- "image_size": 336,
173
- "intermediate_size": 4096,
174
- "num_attention_heads": 16,
175
- "num_hidden_layers": 24,
176
- "patch_size": 14,
177
- "projection_dim": 768
178
- }
179
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/clip-vit-large-patch14-336/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
visual_gen/clip-vit-large-patch14-336/preprocessor_config.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "crop_size": 336,
3
- "do_center_crop": true,
4
- "do_normalize": true,
5
- "do_resize": true,
6
- "feature_extractor_type": "CLIPFeatureExtractor",
7
- "image_mean": [
8
- 0.48145466,
9
- 0.4578275,
10
- 0.40821073
11
- ],
12
- "image_std": [
13
- 0.26862954,
14
- 0.26130258,
15
- 0.27577711
16
- ],
17
- "resample": 3,
18
- "size": 336
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/clip-vit-large-patch14-336/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c6032c2e0caae3dc2d4fba35535fa6307dbb49df59c7e182b1bc4b3329b81801
3
- size 1711974081
 
 
 
 
visual_gen/clip-vit-large-patch14-336/special_tokens_map.json DELETED
@@ -1 +0,0 @@
1
- {"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
 
 
visual_gen/clip-vit-large-patch14-336/tf_model.h5 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d12828ca8f0f3c92194f277b7d893da7f2fb7824d0b99dedb305eb48eb46bb7f
3
- size 1712454232
 
 
 
 
visual_gen/clip-vit-large-patch14-336/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
visual_gen/clip-vit-large-patch14-336/tokenizer_config.json DELETED
@@ -1 +0,0 @@
1
- {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": "<|endoftext|>", "add_prefix_space": false, "errors": "replace", "do_lower_case": true, "name_or_path": "openai/clip-vit-base-patch32", "model_max_length": 77, "special_tokens_map_file": "/home/suraj/.cache/huggingface/transformers/18a566598f286c9139f88160c99f84eec492a26bd22738fa9cb44d5b7e0a5c76.cce1206abbad28826f000510f22f354e53e66a97f7c23745a7dfe27609cc07f5", "tokenizer_class": "CLIPTokenizer"}
 
 
visual_gen/clip-vit-large-patch14-336/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
visual_gen/gemma-2b/README.md DELETED
@@ -1,455 +0,0 @@
1
- ---
2
- library_name: transformers
3
- new_version: google/gemma-2-2b
4
- license: gemma
5
- extra_gated_heading: Access Gemma on Hugging Face
6
- extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
7
- agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging
8
- Face and click below. Requests are processed immediately.
9
- extra_gated_button_content: Acknowledge license
10
- ---
11
-
12
- # Gemma Model Card
13
-
14
- **Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
15
-
16
- This model card corresponds to the 2B base version of the Gemma model. You can also visit the model card of the [7B base model](https://huggingface.co/google/gemma-7b), [7B instruct model](https://huggingface.co/google/gemma-7b-it), and [2B instruct model](https://huggingface.co/google/gemma-2b-it).
17
-
18
- **Resources and Technical Documentation**:
19
-
20
- * [Gemma Technical Report](https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf)
21
- * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
22
- * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma)
23
- * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-gg-hf)
24
-
25
- **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2b)
26
-
27
- **Authors**: Google
28
-
29
- ## Model Information
30
-
31
- Summary description and brief definition of inputs and outputs.
32
-
33
- ### Description
34
-
35
- Gemma is a family of lightweight, state-of-the-art open models from Google,
36
- built from the same research and technology used to create the Gemini models.
37
- They are text-to-text, decoder-only large language models, available in English,
38
- with open weights, pre-trained variants, and instruction-tuned variants. Gemma
39
- models are well-suited for a variety of text generation tasks, including
40
- question answering, summarization, and reasoning. Their relatively small size
41
- makes it possible to deploy them in environments with limited resources such as
42
- a laptop, desktop or your own cloud infrastructure, democratizing access to
43
- state of the art AI models and helping foster innovation for everyone.
44
-
45
- ### Context Length
46
- Models are trained on a context length of 8192 tokens.
47
-
48
- ### Usage
49
-
50
- Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
51
-
52
-
53
- #### Fine-tuning the model
54
-
55
- You can find fine-tuning scripts and notebook under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt it to this model, simply change the model-id to `google/gemma-2b`.
56
- In that repository, we provide:
57
-
58
- * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA
59
- * A script to perform SFT using FSDP on TPU devices
60
- * A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset
61
-
62
-
63
-
64
- #### Running the model on a CPU
65
-
66
-
67
- ```python
68
- from transformers import AutoTokenizer, AutoModelForCausalLM
69
-
70
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
71
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
72
-
73
- input_text = "Write me a poem about Machine Learning."
74
- input_ids = tokenizer(input_text, return_tensors="pt")
75
-
76
- outputs = model.generate(**input_ids)
77
- print(tokenizer.decode(outputs[0]))
78
- ```
79
-
80
-
81
- #### Running the model on a single / multi GPU
82
-
83
-
84
- ```python
85
- # pip install accelerate
86
- from transformers import AutoTokenizer, AutoModelForCausalLM
87
-
88
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
89
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
90
-
91
- input_text = "Write me a poem about Machine Learning."
92
- input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
93
-
94
- outputs = model.generate(**input_ids)
95
- print(tokenizer.decode(outputs[0]))
96
- ```
97
-
98
-
99
- #### Running the model on a GPU using different precisions
100
-
101
- * _Using `torch.float16`_
102
-
103
- ```python
104
- # pip install accelerate
105
- from transformers import AutoTokenizer, AutoModelForCausalLM
106
-
107
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
108
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", revision="float16")
109
-
110
- input_text = "Write me a poem about Machine Learning."
111
- input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
112
-
113
- outputs = model.generate(**input_ids)
114
- print(tokenizer.decode(outputs[0]))
115
- ```
116
-
117
- * _Using `torch.bfloat16`_
118
-
119
- ```python
120
- # pip install accelerate
121
- from transformers import AutoTokenizer, AutoModelForCausalLM
122
-
123
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
124
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto", torch_dtype=torch.bfloat16)
125
-
126
- input_text = "Write me a poem about Machine Learning."
127
- input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
128
-
129
- outputs = model.generate(**input_ids)
130
- print(tokenizer.decode(outputs[0]))
131
- ```
132
-
133
- #### Quantized Versions through `bitsandbytes`
134
-
135
- * _Using 8-bit precision (int8)_
136
-
137
- ```python
138
- # pip install bitsandbytes accelerate
139
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
140
-
141
- quantization_config = BitsAndBytesConfig(load_in_8bit=True)
142
-
143
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
144
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
145
-
146
- input_text = "Write me a poem about Machine Learning."
147
- input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
148
-
149
- outputs = model.generate(**input_ids)
150
- print(tokenizer.decode(outputs[0]))
151
- ```
152
-
153
- * _Using 4-bit precision_
154
-
155
- ```python
156
- # pip install bitsandbytes accelerate
157
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
158
-
159
- quantization_config = BitsAndBytesConfig(load_in_4bit=True)
160
-
161
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
162
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", quantization_config=quantization_config)
163
-
164
- input_text = "Write me a poem about Machine Learning."
165
- input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
166
-
167
- outputs = model.generate(**input_ids)
168
- print(tokenizer.decode(outputs[0]))
169
- ```
170
-
171
-
172
- #### Other optimizations
173
-
174
- * _Flash Attention 2_
175
-
176
- First make sure to install `flash-attn` in your environment `pip install flash-attn`
177
-
178
- ```diff
179
- model = AutoModelForCausalLM.from_pretrained(
180
- model_id,
181
- torch_dtype=torch.float16,
182
- + attn_implementation="flash_attention_2"
183
- ).to(0)
184
- ```
185
-
186
- ### Inputs and outputs
187
-
188
- * **Input:** Text string, such as a question, a prompt, or a document to be
189
- summarized.
190
- * **Output:** Generated English-language text in response to the input, such
191
- as an answer to a question, or a summary of a document.
192
-
193
- ## Model Data
194
-
195
- Data used for model training and how the data was processed.
196
-
197
- ### Training Dataset
198
-
199
- These models were trained on a dataset of text data that includes a wide variety
200
- of sources, totaling 6 trillion tokens. Here are the key components:
201
-
202
- * Web Documents: A diverse collection of web text ensures the model is exposed
203
- to a broad range of linguistic styles, topics, and vocabulary. Primarily
204
- English-language content.
205
- * Code: Exposing the model to code helps it to learn the syntax and patterns of
206
- programming languages, which improves its ability to generate code or
207
- understand code-related questions.
208
- * Mathematics: Training on mathematical text helps the model learn logical
209
- reasoning, symbolic representation, and to address mathematical queries.
210
-
211
- The combination of these diverse data sources is crucial for training a powerful
212
- language model that can handle a wide variety of different tasks and text
213
- formats.
214
-
215
- ### Data Preprocessing
216
-
217
- Here are the key data cleaning and filtering methods applied to the training
218
- data:
219
-
220
- * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
221
- applied at multiple stages in the data preparation process to ensure the
222
- exclusion of harmful and illegal content
223
- * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
224
- reliable, automated techniques were used to filter out certain personal
225
- information and other sensitive data from training sets.
226
- * Additional methods: Filtering based on content quality and safely in line with
227
- [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11).
228
-
229
- ## Implementation Information
230
-
231
- Details about the model internals.
232
-
233
- ### Hardware
234
-
235
- Gemma was trained using the latest generation of
236
- [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e).
237
-
238
- Training large language models requires significant computational power. TPUs,
239
- designed specifically for matrix operations common in machine learning, offer
240
- several advantages in this domain:
241
-
242
- * Performance: TPUs are specifically designed to handle the massive computations
243
- involved in training LLMs. They can speed up training considerably compared to
244
- CPUs.
245
- * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
246
- for the handling of large models and batch sizes during training. This can
247
- lead to better model quality.
248
- * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
249
- handling the growing complexity of large foundation models. You can distribute
250
- training across multiple TPU devices for faster and more efficient processing.
251
- * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
252
- solution for training large models compared to CPU-based infrastructure,
253
- especially when considering the time and resources saved due to faster
254
- training.
255
- * These advantages are aligned with
256
- [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/).
257
-
258
- ### Software
259
-
260
- Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways).
261
-
262
- JAX allows researchers to take advantage of the latest generation of hardware,
263
- including TPUs, for faster and more efficient training of large models.
264
-
265
- ML Pathways is Google's latest effort to build artificially intelligent systems
266
- capable of generalizing across multiple tasks. This is specially suitable for
267
- [foundation models](https://ai.google/discover/foundation-models/), including large language models like
268
- these ones.
269
-
270
- Together, JAX and ML Pathways are used as described in the
271
- [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single
272
- controller' programming model of Jax and Pathways allows a single Python
273
- process to orchestrate the entire training run, dramatically simplifying the
274
- development workflow."
275
-
276
- ## Evaluation
277
-
278
- Model evaluation metrics and results.
279
-
280
- ### Benchmark Results
281
-
282
- These models were evaluated against a large collection of different datasets and
283
- metrics to cover different aspects of text generation:
284
-
285
- | Benchmark | Metric | 2B Params | 7B Params |
286
- | ------------------------------ | ------------- | ----------- | --------- |
287
- | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 |
288
- | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 |
289
- | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 |
290
- | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 49.7 | 51.8 |
291
- | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 |
292
- | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 |
293
- | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 |
294
- | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 |
295
- | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 |
296
- | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 |
297
- | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 |
298
- | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | 12.5 | 23 |
299
- | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 |
300
- | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 |
301
- | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 |
302
- | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 |
303
- | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 |
304
- | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 |
305
- | ------------------------------ | ------------- | ----------- | --------- |
306
- | **Average** | | **45.0** | **56.9** |
307
-
308
- ## Ethics and Safety
309
-
310
- Ethics and safety evaluation approach and results.
311
-
312
- ### Evaluation Approach
313
-
314
- Our evaluation methods include structured evaluations and internal red-teaming
315
- testing of relevant content policies. Red-teaming was conducted by a number of
316
- different teams, each with different goals and human evaluation metrics. These
317
- models were evaluated against a number of different categories relevant to
318
- ethics and safety, including:
319
-
320
- * Text-to-Text Content Safety: Human evaluation on prompts covering safety
321
- policies including child sexual abuse and exploitation, harassment, violence
322
- and gore, and hate speech.
323
- * Text-to-Text Representational Harms: Benchmark against relevant academic
324
- datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2).
325
- * Memorization: Automated evaluation of memorization of training data, including
326
- the risk of personally identifiable information exposure.
327
- * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
328
- biological, radiological, and nuclear (CBRN) risks.
329
-
330
- ### Evaluation Results
331
-
332
- The results of ethics and safety evaluations are within acceptable thresholds
333
- for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child
334
- safety, content safety, representational harms, memorization, large-scale harms.
335
- On top of robust internal evaluations, the results of well known safety
336
- benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
337
- are shown here.
338
-
339
- **Update**: These numbers reflect the new numbers from the updated v1.1 IT models. For the original v1 numbers, please consult the technical report's appendix for the results.
340
-
341
- | Benchmark | Metric | Gemma v1.1 IT 2B | Gemma v1.1 IT 7B |
342
- | ------------------------------ | ------------- | ----------- | --------- |
343
- | [RealToxicity](https://arxiv.org/abs/2009.11462) | average | 6.86 | 7.90 |
344
- | [BOLD](https://arxiv.org/abs/2101.11718) | | 45.57 | 49.08 |
345
- | [CrowS-Pairs](https://aclanthology.org/2020.emnlp-main.154/) | top-1 | 45.82 | 51.33 |
346
- | [BBQ Ambig](https://arxiv.org/abs/2110.08193v2) | 1-shot, top-1 | 62.58 | 92.54 |
347
- | [BBQ Disambig](https://arxiv.org/abs/2110.08193v2) | top-1 | 54.62 | 71.99 |
348
- | [Winogender](https://arxiv.org/abs/1804.09301) | top-1 | 51.25 | 54.17 |
349
- | [TruthfulQA](https://arxiv.org/abs/2109.07958) | | 31.81 | 44.84 |
350
- | [Winobias 1_2](https://arxiv.org/abs/1804.06876) | | 56.12 | 59.09 |
351
- | [Winobias 2_2](https://arxiv.org/abs/1804.06876) | | 91.10 | 92.23 |
352
- | [Toxigen](https://arxiv.org/abs/2203.09509) | | 29.77 | 39.59 |
353
- | ------------------------------ | ------------- | ----------- | --------- |
354
-
355
-
356
- ## Usage and Limitations
357
-
358
- These models have certain limitations that users should be aware of.
359
-
360
- ### Intended Usage
361
-
362
- Open Large Language Models (LLMs) have a wide range of applications across
363
- various industries and domains. The following list of potential uses is not
364
- comprehensive. The purpose of this list is to provide contextual information
365
- about the possible use-cases that the model creators considered as part of model
366
- training and development.
367
-
368
- * Content Creation and Communication
369
- * Text Generation: These models can be used to generate creative text formats
370
- such as poems, scripts, code, marketing copy, and email drafts.
371
- * Chatbots and Conversational AI: Power conversational interfaces for customer
372
- service, virtual assistants, or interactive applications.
373
- * Text Summarization: Generate concise summaries of a text corpus, research
374
- papers, or reports.
375
- * Research and Education
376
- * Natural Language Processing (NLP) Research: These models can serve as a
377
- foundation for researchers to experiment with NLP techniques, develop
378
- algorithms, and contribute to the advancement of the field.
379
- * Language Learning Tools: Support interactive language learning experiences,
380
- aiding in grammar correction or providing writing practice.
381
- * Knowledge Exploration: Assist researchers in exploring large bodies of text
382
- by generating summaries or answering questions about specific topics.
383
-
384
- ### Limitations
385
-
386
- * Training Data
387
- * The quality and diversity of the training data significantly influence the
388
- model's capabilities. Biases or gaps in the training data can lead to
389
- limitations in the model's responses.
390
- * The scope of the training dataset determines the subject areas the model can
391
- handle effectively.
392
- * Context and Task Complexity
393
- * LLMs are better at tasks that can be framed with clear prompts and
394
- instructions. Open-ended or highly complex tasks might be challenging.
395
- * A model's performance can be influenced by the amount of context provided
396
- (longer context generally leads to better outputs, up to a certain point).
397
- * Language Ambiguity and Nuance
398
- * Natural language is inherently complex. LLMs might struggle to grasp subtle
399
- nuances, sarcasm, or figurative language.
400
- * Factual Accuracy
401
- * LLMs generate responses based on information they learned from their
402
- training datasets, but they are not knowledge bases. They may generate
403
- incorrect or outdated factual statements.
404
- * Common Sense
405
- * LLMs rely on statistical patterns in language. They might lack the ability
406
- to apply common sense reasoning in certain situations.
407
-
408
- ### Ethical Considerations and Risks
409
-
410
- The development of large language models (LLMs) raises several ethical concerns.
411
- In creating an open model, we have carefully considered the following:
412
-
413
- * Bias and Fairness
414
- * LLMs trained on large-scale, real-world text data can reflect socio-cultural
415
- biases embedded in the training material. These models underwent careful
416
- scrutiny, input data pre-processing described and posterior evaluations
417
- reported in this card.
418
- * Misinformation and Misuse
419
- * LLMs can be misused to generate text that is false, misleading, or harmful.
420
- * Guidelines are provided for responsible use with the model, see the
421
- [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible).
422
- * Transparency and Accountability:
423
- * This model card summarizes details on the models' architecture,
424
- capabilities, limitations, and evaluation processes.
425
- * A responsibly developed open model offers the opportunity to share
426
- innovation by making LLM technology accessible to developers and researchers
427
- across the AI ecosystem.
428
-
429
- Risks identified and mitigations:
430
-
431
- * Perpetuation of biases: It's encouraged to perform continuous monitoring
432
- (using evaluation metrics, human review) and the exploration of de-biasing
433
- techniques during model training, fine-tuning, and other use cases.
434
- * Generation of harmful content: Mechanisms and guidelines for content safety
435
- are essential. Developers are encouraged to exercise caution and implement
436
- appropriate content safety safeguards based on their specific product policies
437
- and application use cases.
438
- * Misuse for malicious purposes: Technical limitations and developer and
439
- end-user education can help mitigate against malicious applications of LLMs.
440
- Educational resources and reporting mechanisms for users to flag misuse are
441
- provided. Prohibited uses of Gemma models are outlined in the
442
- [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
443
- * Privacy violations: Models were trained on data filtered for removal of PII
444
- (Personally Identifiable Information). Developers are encouraged to adhere to
445
- privacy regulations with privacy-preserving techniques.
446
-
447
- ### Benefits
448
-
449
- At the time of release, this family of models provides high-performance open
450
- large language model implementations designed from the ground up for Responsible
451
- AI development compared to similarly sized models.
452
-
453
- Using the benchmark evaluation metrics described in this document, these models
454
- have shown to provide superior performance to other, comparably-sized open model
455
- alternatives.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/gemma-2b/config.json DELETED
@@ -1,27 +0,0 @@
1
- {
2
- "architectures": [
3
- "GemmaForCausalLM"
4
- ],
5
- "attention_bias": false,
6
- "attention_dropout": 0.0,
7
- "bos_token_id": 2,
8
- "eos_token_id": 1,
9
- "head_dim": 256,
10
- "hidden_act": "gelu",
11
- "hidden_size": 2048,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 16384,
14
- "max_position_embeddings": 8192,
15
- "model_type": "gemma",
16
- "num_attention_heads": 8,
17
- "num_hidden_layers": 18,
18
- "num_key_value_heads": 1,
19
- "pad_token_id": 0,
20
- "rms_norm_eps": 1e-06,
21
- "rope_scaling": null,
22
- "rope_theta": 10000.0,
23
- "torch_dtype": "bfloat16",
24
- "transformers_version": "4.38.0.dev0",
25
- "use_cache": true,
26
- "vocab_size": 256000
27
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/gemma-2b/generation_config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 2,
4
- "eos_token_id": 1,
5
- "pad_token_id": 0,
6
- "transformers_version": "4.38.0.dev0"
7
- }
 
 
 
 
 
 
 
 
visual_gen/gemma-2b/gitattributes DELETED
@@ -1,37 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
- gemma-2b.gguf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/gemma-2b/model-00001-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:98caad07f1e1d17fede7734906d6881d4cb231e1d0cd2ebcf7fc8a6317eee4d6
3
- size 4945242264
 
 
 
 
visual_gen/gemma-2b/model-00002-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3342a2f7db857bc9873c699eef1416eb2b320603e5e042a6f7736689b26382cb
3
- size 67121608
 
 
 
 
visual_gen/gemma-2b/model.safetensors.index.json DELETED
@@ -1,171 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 5012344832
4
- },
5
- "weight_map": {
6
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
14
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
16
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
17
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
18
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
19
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
20
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
22
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
24
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
26
- "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
28
- "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
29
- "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
31
- "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
32
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
- "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
- "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
40
- "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
41
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
- "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
- "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
50
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
52
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
- "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
54
- "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
55
- "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
56
- "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
- "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
60
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
62
- "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
64
- "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
65
- "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
67
- "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
70
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
72
- "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
74
- "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
76
- "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
77
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
- "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
- "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
86
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
- "model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
89
- "model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
90
- "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
91
- "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
92
- "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
93
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
- "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
96
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
100
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
101
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
102
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
112
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
113
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
122
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
124
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
125
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
126
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
127
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
128
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
130
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
132
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
134
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
136
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
137
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
138
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
139
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
140
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
142
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
144
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
146
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
148
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
149
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
158
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
160
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
161
- "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
162
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
163
- "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
164
- "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
165
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
166
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
167
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
168
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
169
- "model.norm.weight": "model-00002-of-00002.safetensors"
170
- }
171
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/gemma-2b/special_tokens_map.json DELETED
@@ -1,34 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<start_of_turn>",
4
- "<end_of_turn>"
5
- ],
6
- "bos_token": {
7
- "content": "<bos>",
8
- "lstrip": false,
9
- "normalized": false,
10
- "rstrip": false,
11
- "single_word": false
12
- },
13
- "eos_token": {
14
- "content": "<eos>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false
19
- },
20
- "pad_token": {
21
- "content": "<pad>",
22
- "lstrip": false,
23
- "normalized": false,
24
- "rstrip": false,
25
- "single_word": false
26
- },
27
- "unk_token": {
28
- "content": "<unk>",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false
33
- }
34
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/gemma-2b/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c15eb04bc5ad609fb26533e8525302c5640a945e5f67f65b7c849900acda7d99
3
- size 17518497
 
 
 
 
visual_gen/gemma-2b/tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
- size 4241003
 
 
 
 
visual_gen/gemma-2b/tokenizer_config.json DELETED
@@ -1,1516 +0,0 @@
1
- {
2
- "add_bos_token": true,
3
- "add_eos_token": false,
4
- "added_tokens_decoder": {
5
- "0": {
6
- "content": "<pad>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "1": {
14
- "content": "<eos>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "2": {
22
- "content": "<bos>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "3": {
30
- "content": "<unk>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "4": {
38
- "content": "<mask>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": false
44
- },
45
- "5": {
46
- "content": "<2mass>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": false
52
- },
53
- "6": {
54
- "content": "[@BOS@]",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": false
60
- },
61
- "7": {
62
- "content": "<unused0>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": false
68
- },
69
- "8": {
70
- "content": "<unused1>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": false
76
- },
77
- "9": {
78
- "content": "<unused2>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": false
84
- },
85
- "10": {
86
- "content": "<unused3>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": false
92
- },
93
- "11": {
94
- "content": "<unused4>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": false
100
- },
101
- "12": {
102
- "content": "<unused5>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": false
108
- },
109
- "13": {
110
- "content": "<unused6>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": false
116
- },
117
- "14": {
118
- "content": "<unused7>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "15": {
126
- "content": "<unused8>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "16": {
134
- "content": "<unused9>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "17": {
142
- "content": "<unused10>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "18": {
150
- "content": "<unused11>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "19": {
158
- "content": "<unused12>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "20": {
166
- "content": "<unused13>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "21": {
174
- "content": "<unused14>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- },
181
- "22": {
182
- "content": "<unused15>",
183
- "lstrip": false,
184
- "normalized": false,
185
- "rstrip": false,
186
- "single_word": false,
187
- "special": false
188
- },
189
- "23": {
190
- "content": "<unused16>",
191
- "lstrip": false,
192
- "normalized": false,
193
- "rstrip": false,
194
- "single_word": false,
195
- "special": false
196
- },
197
- "24": {
198
- "content": "<unused17>",
199
- "lstrip": false,
200
- "normalized": false,
201
- "rstrip": false,
202
- "single_word": false,
203
- "special": false
204
- },
205
- "25": {
206
- "content": "<unused18>",
207
- "lstrip": false,
208
- "normalized": false,
209
- "rstrip": false,
210
- "single_word": false,
211
- "special": false
212
- },
213
- "26": {
214
- "content": "<unused19>",
215
- "lstrip": false,
216
- "normalized": false,
217
- "rstrip": false,
218
- "single_word": false,
219
- "special": false
220
- },
221
- "27": {
222
- "content": "<unused20>",
223
- "lstrip": false,
224
- "normalized": false,
225
- "rstrip": false,
226
- "single_word": false,
227
- "special": false
228
- },
229
- "28": {
230
- "content": "<unused21>",
231
- "lstrip": false,
232
- "normalized": false,
233
- "rstrip": false,
234
- "single_word": false,
235
- "special": false
236
- },
237
- "29": {
238
- "content": "<unused22>",
239
- "lstrip": false,
240
- "normalized": false,
241
- "rstrip": false,
242
- "single_word": false,
243
- "special": false
244
- },
245
- "30": {
246
- "content": "<unused23>",
247
- "lstrip": false,
248
- "normalized": false,
249
- "rstrip": false,
250
- "single_word": false,
251
- "special": false
252
- },
253
- "31": {
254
- "content": "<unused24>",
255
- "lstrip": false,
256
- "normalized": false,
257
- "rstrip": false,
258
- "single_word": false,
259
- "special": false
260
- },
261
- "32": {
262
- "content": "<unused25>",
263
- "lstrip": false,
264
- "normalized": false,
265
- "rstrip": false,
266
- "single_word": false,
267
- "special": false
268
- },
269
- "33": {
270
- "content": "<unused26>",
271
- "lstrip": false,
272
- "normalized": false,
273
- "rstrip": false,
274
- "single_word": false,
275
- "special": false
276
- },
277
- "34": {
278
- "content": "<unused27>",
279
- "lstrip": false,
280
- "normalized": false,
281
- "rstrip": false,
282
- "single_word": false,
283
- "special": false
284
- },
285
- "35": {
286
- "content": "<unused28>",
287
- "lstrip": false,
288
- "normalized": false,
289
- "rstrip": false,
290
- "single_word": false,
291
- "special": false
292
- },
293
- "36": {
294
- "content": "<unused29>",
295
- "lstrip": false,
296
- "normalized": false,
297
- "rstrip": false,
298
- "single_word": false,
299
- "special": false
300
- },
301
- "37": {
302
- "content": "<unused30>",
303
- "lstrip": false,
304
- "normalized": false,
305
- "rstrip": false,
306
- "single_word": false,
307
- "special": false
308
- },
309
- "38": {
310
- "content": "<unused31>",
311
- "lstrip": false,
312
- "normalized": false,
313
- "rstrip": false,
314
- "single_word": false,
315
- "special": false
316
- },
317
- "39": {
318
- "content": "<unused32>",
319
- "lstrip": false,
320
- "normalized": false,
321
- "rstrip": false,
322
- "single_word": false,
323
- "special": false
324
- },
325
- "40": {
326
- "content": "<unused33>",
327
- "lstrip": false,
328
- "normalized": false,
329
- "rstrip": false,
330
- "single_word": false,
331
- "special": false
332
- },
333
- "41": {
334
- "content": "<unused34>",
335
- "lstrip": false,
336
- "normalized": false,
337
- "rstrip": false,
338
- "single_word": false,
339
- "special": false
340
- },
341
- "42": {
342
- "content": "<unused35>",
343
- "lstrip": false,
344
- "normalized": false,
345
- "rstrip": false,
346
- "single_word": false,
347
- "special": false
348
- },
349
- "43": {
350
- "content": "<unused36>",
351
- "lstrip": false,
352
- "normalized": false,
353
- "rstrip": false,
354
- "single_word": false,
355
- "special": false
356
- },
357
- "44": {
358
- "content": "<unused37>",
359
- "lstrip": false,
360
- "normalized": false,
361
- "rstrip": false,
362
- "single_word": false,
363
- "special": false
364
- },
365
- "45": {
366
- "content": "<unused38>",
367
- "lstrip": false,
368
- "normalized": false,
369
- "rstrip": false,
370
- "single_word": false,
371
- "special": false
372
- },
373
- "46": {
374
- "content": "<unused39>",
375
- "lstrip": false,
376
- "normalized": false,
377
- "rstrip": false,
378
- "single_word": false,
379
- "special": false
380
- },
381
- "47": {
382
- "content": "<unused40>",
383
- "lstrip": false,
384
- "normalized": false,
385
- "rstrip": false,
386
- "single_word": false,
387
- "special": false
388
- },
389
- "48": {
390
- "content": "<unused41>",
391
- "lstrip": false,
392
- "normalized": false,
393
- "rstrip": false,
394
- "single_word": false,
395
- "special": false
396
- },
397
- "49": {
398
- "content": "<unused42>",
399
- "lstrip": false,
400
- "normalized": false,
401
- "rstrip": false,
402
- "single_word": false,
403
- "special": false
404
- },
405
- "50": {
406
- "content": "<unused43>",
407
- "lstrip": false,
408
- "normalized": false,
409
- "rstrip": false,
410
- "single_word": false,
411
- "special": false
412
- },
413
- "51": {
414
- "content": "<unused44>",
415
- "lstrip": false,
416
- "normalized": false,
417
- "rstrip": false,
418
- "single_word": false,
419
- "special": false
420
- },
421
- "52": {
422
- "content": "<unused45>",
423
- "lstrip": false,
424
- "normalized": false,
425
- "rstrip": false,
426
- "single_word": false,
427
- "special": false
428
- },
429
- "53": {
430
- "content": "<unused46>",
431
- "lstrip": false,
432
- "normalized": false,
433
- "rstrip": false,
434
- "single_word": false,
435
- "special": false
436
- },
437
- "54": {
438
- "content": "<unused47>",
439
- "lstrip": false,
440
- "normalized": false,
441
- "rstrip": false,
442
- "single_word": false,
443
- "special": false
444
- },
445
- "55": {
446
- "content": "<unused48>",
447
- "lstrip": false,
448
- "normalized": false,
449
- "rstrip": false,
450
- "single_word": false,
451
- "special": false
452
- },
453
- "56": {
454
- "content": "<unused49>",
455
- "lstrip": false,
456
- "normalized": false,
457
- "rstrip": false,
458
- "single_word": false,
459
- "special": false
460
- },
461
- "57": {
462
- "content": "<unused50>",
463
- "lstrip": false,
464
- "normalized": false,
465
- "rstrip": false,
466
- "single_word": false,
467
- "special": false
468
- },
469
- "58": {
470
- "content": "<unused51>",
471
- "lstrip": false,
472
- "normalized": false,
473
- "rstrip": false,
474
- "single_word": false,
475
- "special": false
476
- },
477
- "59": {
478
- "content": "<unused52>",
479
- "lstrip": false,
480
- "normalized": false,
481
- "rstrip": false,
482
- "single_word": false,
483
- "special": false
484
- },
485
- "60": {
486
- "content": "<unused53>",
487
- "lstrip": false,
488
- "normalized": false,
489
- "rstrip": false,
490
- "single_word": false,
491
- "special": false
492
- },
493
- "61": {
494
- "content": "<unused54>",
495
- "lstrip": false,
496
- "normalized": false,
497
- "rstrip": false,
498
- "single_word": false,
499
- "special": false
500
- },
501
- "62": {
502
- "content": "<unused55>",
503
- "lstrip": false,
504
- "normalized": false,
505
- "rstrip": false,
506
- "single_word": false,
507
- "special": false
508
- },
509
- "63": {
510
- "content": "<unused56>",
511
- "lstrip": false,
512
- "normalized": false,
513
- "rstrip": false,
514
- "single_word": false,
515
- "special": false
516
- },
517
- "64": {
518
- "content": "<unused57>",
519
- "lstrip": false,
520
- "normalized": false,
521
- "rstrip": false,
522
- "single_word": false,
523
- "special": false
524
- },
525
- "65": {
526
- "content": "<unused58>",
527
- "lstrip": false,
528
- "normalized": false,
529
- "rstrip": false,
530
- "single_word": false,
531
- "special": false
532
- },
533
- "66": {
534
- "content": "<unused59>",
535
- "lstrip": false,
536
- "normalized": false,
537
- "rstrip": false,
538
- "single_word": false,
539
- "special": false
540
- },
541
- "67": {
542
- "content": "<unused60>",
543
- "lstrip": false,
544
- "normalized": false,
545
- "rstrip": false,
546
- "single_word": false,
547
- "special": false
548
- },
549
- "68": {
550
- "content": "<unused61>",
551
- "lstrip": false,
552
- "normalized": false,
553
- "rstrip": false,
554
- "single_word": false,
555
- "special": false
556
- },
557
- "69": {
558
- "content": "<unused62>",
559
- "lstrip": false,
560
- "normalized": false,
561
- "rstrip": false,
562
- "single_word": false,
563
- "special": false
564
- },
565
- "70": {
566
- "content": "<unused63>",
567
- "lstrip": false,
568
- "normalized": false,
569
- "rstrip": false,
570
- "single_word": false,
571
- "special": false
572
- },
573
- "71": {
574
- "content": "<unused64>",
575
- "lstrip": false,
576
- "normalized": false,
577
- "rstrip": false,
578
- "single_word": false,
579
- "special": false
580
- },
581
- "72": {
582
- "content": "<unused65>",
583
- "lstrip": false,
584
- "normalized": false,
585
- "rstrip": false,
586
- "single_word": false,
587
- "special": false
588
- },
589
- "73": {
590
- "content": "<unused66>",
591
- "lstrip": false,
592
- "normalized": false,
593
- "rstrip": false,
594
- "single_word": false,
595
- "special": false
596
- },
597
- "74": {
598
- "content": "<unused67>",
599
- "lstrip": false,
600
- "normalized": false,
601
- "rstrip": false,
602
- "single_word": false,
603
- "special": false
604
- },
605
- "75": {
606
- "content": "<unused68>",
607
- "lstrip": false,
608
- "normalized": false,
609
- "rstrip": false,
610
- "single_word": false,
611
- "special": false
612
- },
613
- "76": {
614
- "content": "<unused69>",
615
- "lstrip": false,
616
- "normalized": false,
617
- "rstrip": false,
618
- "single_word": false,
619
- "special": false
620
- },
621
- "77": {
622
- "content": "<unused70>",
623
- "lstrip": false,
624
- "normalized": false,
625
- "rstrip": false,
626
- "single_word": false,
627
- "special": false
628
- },
629
- "78": {
630
- "content": "<unused71>",
631
- "lstrip": false,
632
- "normalized": false,
633
- "rstrip": false,
634
- "single_word": false,
635
- "special": false
636
- },
637
- "79": {
638
- "content": "<unused72>",
639
- "lstrip": false,
640
- "normalized": false,
641
- "rstrip": false,
642
- "single_word": false,
643
- "special": false
644
- },
645
- "80": {
646
- "content": "<unused73>",
647
- "lstrip": false,
648
- "normalized": false,
649
- "rstrip": false,
650
- "single_word": false,
651
- "special": false
652
- },
653
- "81": {
654
- "content": "<unused74>",
655
- "lstrip": false,
656
- "normalized": false,
657
- "rstrip": false,
658
- "single_word": false,
659
- "special": false
660
- },
661
- "82": {
662
- "content": "<unused75>",
663
- "lstrip": false,
664
- "normalized": false,
665
- "rstrip": false,
666
- "single_word": false,
667
- "special": false
668
- },
669
- "83": {
670
- "content": "<unused76>",
671
- "lstrip": false,
672
- "normalized": false,
673
- "rstrip": false,
674
- "single_word": false,
675
- "special": false
676
- },
677
- "84": {
678
- "content": "<unused77>",
679
- "lstrip": false,
680
- "normalized": false,
681
- "rstrip": false,
682
- "single_word": false,
683
- "special": false
684
- },
685
- "85": {
686
- "content": "<unused78>",
687
- "lstrip": false,
688
- "normalized": false,
689
- "rstrip": false,
690
- "single_word": false,
691
- "special": false
692
- },
693
- "86": {
694
- "content": "<unused79>",
695
- "lstrip": false,
696
- "normalized": false,
697
- "rstrip": false,
698
- "single_word": false,
699
- "special": false
700
- },
701
- "87": {
702
- "content": "<unused80>",
703
- "lstrip": false,
704
- "normalized": false,
705
- "rstrip": false,
706
- "single_word": false,
707
- "special": false
708
- },
709
- "88": {
710
- "content": "<unused81>",
711
- "lstrip": false,
712
- "normalized": false,
713
- "rstrip": false,
714
- "single_word": false,
715
- "special": false
716
- },
717
- "89": {
718
- "content": "<unused82>",
719
- "lstrip": false,
720
- "normalized": false,
721
- "rstrip": false,
722
- "single_word": false,
723
- "special": false
724
- },
725
- "90": {
726
- "content": "<unused83>",
727
- "lstrip": false,
728
- "normalized": false,
729
- "rstrip": false,
730
- "single_word": false,
731
- "special": false
732
- },
733
- "91": {
734
- "content": "<unused84>",
735
- "lstrip": false,
736
- "normalized": false,
737
- "rstrip": false,
738
- "single_word": false,
739
- "special": false
740
- },
741
- "92": {
742
- "content": "<unused85>",
743
- "lstrip": false,
744
- "normalized": false,
745
- "rstrip": false,
746
- "single_word": false,
747
- "special": false
748
- },
749
- "93": {
750
- "content": "<unused86>",
751
- "lstrip": false,
752
- "normalized": false,
753
- "rstrip": false,
754
- "single_word": false,
755
- "special": false
756
- },
757
- "94": {
758
- "content": "<unused87>",
759
- "lstrip": false,
760
- "normalized": false,
761
- "rstrip": false,
762
- "single_word": false,
763
- "special": false
764
- },
765
- "95": {
766
- "content": "<unused88>",
767
- "lstrip": false,
768
- "normalized": false,
769
- "rstrip": false,
770
- "single_word": false,
771
- "special": false
772
- },
773
- "96": {
774
- "content": "<unused89>",
775
- "lstrip": false,
776
- "normalized": false,
777
- "rstrip": false,
778
- "single_word": false,
779
- "special": false
780
- },
781
- "97": {
782
- "content": "<unused90>",
783
- "lstrip": false,
784
- "normalized": false,
785
- "rstrip": false,
786
- "single_word": false,
787
- "special": false
788
- },
789
- "98": {
790
- "content": "<unused91>",
791
- "lstrip": false,
792
- "normalized": false,
793
- "rstrip": false,
794
- "single_word": false,
795
- "special": false
796
- },
797
- "99": {
798
- "content": "<unused92>",
799
- "lstrip": false,
800
- "normalized": false,
801
- "rstrip": false,
802
- "single_word": false,
803
- "special": false
804
- },
805
- "100": {
806
- "content": "<unused93>",
807
- "lstrip": false,
808
- "normalized": false,
809
- "rstrip": false,
810
- "single_word": false,
811
- "special": false
812
- },
813
- "101": {
814
- "content": "<unused94>",
815
- "lstrip": false,
816
- "normalized": false,
817
- "rstrip": false,
818
- "single_word": false,
819
- "special": false
820
- },
821
- "102": {
822
- "content": "<unused95>",
823
- "lstrip": false,
824
- "normalized": false,
825
- "rstrip": false,
826
- "single_word": false,
827
- "special": false
828
- },
829
- "103": {
830
- "content": "<unused96>",
831
- "lstrip": false,
832
- "normalized": false,
833
- "rstrip": false,
834
- "single_word": false,
835
- "special": false
836
- },
837
- "104": {
838
- "content": "<unused97>",
839
- "lstrip": false,
840
- "normalized": false,
841
- "rstrip": false,
842
- "single_word": false,
843
- "special": false
844
- },
845
- "105": {
846
- "content": "<unused98>",
847
- "lstrip": false,
848
- "normalized": false,
849
- "rstrip": false,
850
- "single_word": false,
851
- "special": false
852
- },
853
- "106": {
854
- "content": "<start_of_turn>",
855
- "lstrip": false,
856
- "normalized": false,
857
- "rstrip": false,
858
- "single_word": false,
859
- "special": true
860
- },
861
- "107": {
862
- "content": "<end_of_turn>",
863
- "lstrip": false,
864
- "normalized": false,
865
- "rstrip": false,
866
- "single_word": false,
867
- "special": true
868
- },
869
- "108": {
870
- "content": "\n",
871
- "lstrip": false,
872
- "normalized": false,
873
- "rstrip": false,
874
- "single_word": false,
875
- "special": false
876
- },
877
- "109": {
878
- "content": "\n\n",
879
- "lstrip": false,
880
- "normalized": false,
881
- "rstrip": false,
882
- "single_word": false,
883
- "special": false
884
- },
885
- "110": {
886
- "content": "\n\n\n",
887
- "lstrip": false,
888
- "normalized": false,
889
- "rstrip": false,
890
- "single_word": false,
891
- "special": false
892
- },
893
- "111": {
894
- "content": "\n\n\n\n",
895
- "lstrip": false,
896
- "normalized": false,
897
- "rstrip": false,
898
- "single_word": false,
899
- "special": false
900
- },
901
- "112": {
902
- "content": "\n\n\n\n\n",
903
- "lstrip": false,
904
- "normalized": false,
905
- "rstrip": false,
906
- "single_word": false,
907
- "special": false
908
- },
909
- "113": {
910
- "content": "\n\n\n\n\n\n",
911
- "lstrip": false,
912
- "normalized": false,
913
- "rstrip": false,
914
- "single_word": false,
915
- "special": false
916
- },
917
- "114": {
918
- "content": "\n\n\n\n\n\n\n",
919
- "lstrip": false,
920
- "normalized": false,
921
- "rstrip": false,
922
- "single_word": false,
923
- "special": false
924
- },
925
- "115": {
926
- "content": "\n\n\n\n\n\n\n\n",
927
- "lstrip": false,
928
- "normalized": false,
929
- "rstrip": false,
930
- "single_word": false,
931
- "special": false
932
- },
933
- "116": {
934
- "content": "\n\n\n\n\n\n\n\n\n",
935
- "lstrip": false,
936
- "normalized": false,
937
- "rstrip": false,
938
- "single_word": false,
939
- "special": false
940
- },
941
- "117": {
942
- "content": "\n\n\n\n\n\n\n\n\n\n",
943
- "lstrip": false,
944
- "normalized": false,
945
- "rstrip": false,
946
- "single_word": false,
947
- "special": false
948
- },
949
- "118": {
950
- "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
- "lstrip": false,
952
- "normalized": false,
953
- "rstrip": false,
954
- "single_word": false,
955
- "special": false
956
- },
957
- "119": {
958
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
- "lstrip": false,
960
- "normalized": false,
961
- "rstrip": false,
962
- "single_word": false,
963
- "special": false
964
- },
965
- "120": {
966
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
- "lstrip": false,
968
- "normalized": false,
969
- "rstrip": false,
970
- "single_word": false,
971
- "special": false
972
- },
973
- "121": {
974
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
- "lstrip": false,
976
- "normalized": false,
977
- "rstrip": false,
978
- "single_word": false,
979
- "special": false
980
- },
981
- "122": {
982
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
- "lstrip": false,
984
- "normalized": false,
985
- "rstrip": false,
986
- "single_word": false,
987
- "special": false
988
- },
989
- "123": {
990
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
- "lstrip": false,
992
- "normalized": false,
993
- "rstrip": false,
994
- "single_word": false,
995
- "special": false
996
- },
997
- "124": {
998
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
- "lstrip": false,
1000
- "normalized": false,
1001
- "rstrip": false,
1002
- "single_word": false,
1003
- "special": false
1004
- },
1005
- "125": {
1006
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
- "lstrip": false,
1008
- "normalized": false,
1009
- "rstrip": false,
1010
- "single_word": false,
1011
- "special": false
1012
- },
1013
- "126": {
1014
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
- "lstrip": false,
1016
- "normalized": false,
1017
- "rstrip": false,
1018
- "single_word": false,
1019
- "special": false
1020
- },
1021
- "127": {
1022
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
- "lstrip": false,
1024
- "normalized": false,
1025
- "rstrip": false,
1026
- "single_word": false,
1027
- "special": false
1028
- },
1029
- "128": {
1030
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
- "lstrip": false,
1032
- "normalized": false,
1033
- "rstrip": false,
1034
- "single_word": false,
1035
- "special": false
1036
- },
1037
- "129": {
1038
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
- "lstrip": false,
1040
- "normalized": false,
1041
- "rstrip": false,
1042
- "single_word": false,
1043
- "special": false
1044
- },
1045
- "130": {
1046
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
- "lstrip": false,
1048
- "normalized": false,
1049
- "rstrip": false,
1050
- "single_word": false,
1051
- "special": false
1052
- },
1053
- "131": {
1054
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
- "lstrip": false,
1056
- "normalized": false,
1057
- "rstrip": false,
1058
- "single_word": false,
1059
- "special": false
1060
- },
1061
- "132": {
1062
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
- "lstrip": false,
1064
- "normalized": false,
1065
- "rstrip": false,
1066
- "single_word": false,
1067
- "special": false
1068
- },
1069
- "133": {
1070
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
- "lstrip": false,
1072
- "normalized": false,
1073
- "rstrip": false,
1074
- "single_word": false,
1075
- "special": false
1076
- },
1077
- "134": {
1078
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
- "lstrip": false,
1080
- "normalized": false,
1081
- "rstrip": false,
1082
- "single_word": false,
1083
- "special": false
1084
- },
1085
- "135": {
1086
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
- "lstrip": false,
1088
- "normalized": false,
1089
- "rstrip": false,
1090
- "single_word": false,
1091
- "special": false
1092
- },
1093
- "136": {
1094
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
- "lstrip": false,
1096
- "normalized": false,
1097
- "rstrip": false,
1098
- "single_word": false,
1099
- "special": false
1100
- },
1101
- "137": {
1102
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
- "lstrip": false,
1104
- "normalized": false,
1105
- "rstrip": false,
1106
- "single_word": false,
1107
- "special": false
1108
- },
1109
- "138": {
1110
- "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
- "lstrip": false,
1112
- "normalized": false,
1113
- "rstrip": false,
1114
- "single_word": false,
1115
- "special": false
1116
- },
1117
- "169": {
1118
- "content": "<table>",
1119
- "lstrip": false,
1120
- "normalized": false,
1121
- "rstrip": false,
1122
- "single_word": false,
1123
- "special": false
1124
- },
1125
- "170": {
1126
- "content": "<caption>",
1127
- "lstrip": false,
1128
- "normalized": false,
1129
- "rstrip": false,
1130
- "single_word": false,
1131
- "special": false
1132
- },
1133
- "171": {
1134
- "content": "<thead>",
1135
- "lstrip": false,
1136
- "normalized": false,
1137
- "rstrip": false,
1138
- "single_word": false,
1139
- "special": false
1140
- },
1141
- "172": {
1142
- "content": "<tbody>",
1143
- "lstrip": false,
1144
- "normalized": false,
1145
- "rstrip": false,
1146
- "single_word": false,
1147
- "special": false
1148
- },
1149
- "173": {
1150
- "content": "<tfoot>",
1151
- "lstrip": false,
1152
- "normalized": false,
1153
- "rstrip": false,
1154
- "single_word": false,
1155
- "special": false
1156
- },
1157
- "174": {
1158
- "content": "<tr>",
1159
- "lstrip": false,
1160
- "normalized": false,
1161
- "rstrip": false,
1162
- "single_word": false,
1163
- "special": false
1164
- },
1165
- "175": {
1166
- "content": "<th>",
1167
- "lstrip": false,
1168
- "normalized": false,
1169
- "rstrip": false,
1170
- "single_word": false,
1171
- "special": false
1172
- },
1173
- "176": {
1174
- "content": "<td>",
1175
- "lstrip": false,
1176
- "normalized": false,
1177
- "rstrip": false,
1178
- "single_word": false,
1179
- "special": false
1180
- },
1181
- "177": {
1182
- "content": "</table>",
1183
- "lstrip": false,
1184
- "normalized": false,
1185
- "rstrip": false,
1186
- "single_word": false,
1187
- "special": false
1188
- },
1189
- "178": {
1190
- "content": "</caption>",
1191
- "lstrip": false,
1192
- "normalized": false,
1193
- "rstrip": false,
1194
- "single_word": false,
1195
- "special": false
1196
- },
1197
- "179": {
1198
- "content": "</thead>",
1199
- "lstrip": false,
1200
- "normalized": false,
1201
- "rstrip": false,
1202
- "single_word": false,
1203
- "special": false
1204
- },
1205
- "180": {
1206
- "content": "</tbody>",
1207
- "lstrip": false,
1208
- "normalized": false,
1209
- "rstrip": false,
1210
- "single_word": false,
1211
- "special": false
1212
- },
1213
- "181": {
1214
- "content": "</tfoot>",
1215
- "lstrip": false,
1216
- "normalized": false,
1217
- "rstrip": false,
1218
- "single_word": false,
1219
- "special": false
1220
- },
1221
- "182": {
1222
- "content": "</tr>",
1223
- "lstrip": false,
1224
- "normalized": false,
1225
- "rstrip": false,
1226
- "single_word": false,
1227
- "special": false
1228
- },
1229
- "183": {
1230
- "content": "</th>",
1231
- "lstrip": false,
1232
- "normalized": false,
1233
- "rstrip": false,
1234
- "single_word": false,
1235
- "special": false
1236
- },
1237
- "184": {
1238
- "content": "</td>",
1239
- "lstrip": false,
1240
- "normalized": false,
1241
- "rstrip": false,
1242
- "single_word": false,
1243
- "special": false
1244
- },
1245
- "185": {
1246
- "content": "<h1>",
1247
- "lstrip": false,
1248
- "normalized": false,
1249
- "rstrip": false,
1250
- "single_word": false,
1251
- "special": false
1252
- },
1253
- "186": {
1254
- "content": "<h2>",
1255
- "lstrip": false,
1256
- "normalized": false,
1257
- "rstrip": false,
1258
- "single_word": false,
1259
- "special": false
1260
- },
1261
- "187": {
1262
- "content": "<h3>",
1263
- "lstrip": false,
1264
- "normalized": false,
1265
- "rstrip": false,
1266
- "single_word": false,
1267
- "special": false
1268
- },
1269
- "188": {
1270
- "content": "<h4>",
1271
- "lstrip": false,
1272
- "normalized": false,
1273
- "rstrip": false,
1274
- "single_word": false,
1275
- "special": false
1276
- },
1277
- "189": {
1278
- "content": "<h5>",
1279
- "lstrip": false,
1280
- "normalized": false,
1281
- "rstrip": false,
1282
- "single_word": false,
1283
- "special": false
1284
- },
1285
- "190": {
1286
- "content": "<h6>",
1287
- "lstrip": false,
1288
- "normalized": false,
1289
- "rstrip": false,
1290
- "single_word": false,
1291
- "special": false
1292
- },
1293
- "191": {
1294
- "content": "<blockquote>",
1295
- "lstrip": false,
1296
- "normalized": false,
1297
- "rstrip": false,
1298
- "single_word": false,
1299
- "special": false
1300
- },
1301
- "192": {
1302
- "content": "</h1>",
1303
- "lstrip": false,
1304
- "normalized": false,
1305
- "rstrip": false,
1306
- "single_word": false,
1307
- "special": false
1308
- },
1309
- "193": {
1310
- "content": "</h2>",
1311
- "lstrip": false,
1312
- "normalized": false,
1313
- "rstrip": false,
1314
- "single_word": false,
1315
- "special": false
1316
- },
1317
- "194": {
1318
- "content": "</h3>",
1319
- "lstrip": false,
1320
- "normalized": false,
1321
- "rstrip": false,
1322
- "single_word": false,
1323
- "special": false
1324
- },
1325
- "195": {
1326
- "content": "</h4>",
1327
- "lstrip": false,
1328
- "normalized": false,
1329
- "rstrip": false,
1330
- "single_word": false,
1331
- "special": false
1332
- },
1333
- "196": {
1334
- "content": "</h5>",
1335
- "lstrip": false,
1336
- "normalized": false,
1337
- "rstrip": false,
1338
- "single_word": false,
1339
- "special": false
1340
- },
1341
- "197": {
1342
- "content": "</h6>",
1343
- "lstrip": false,
1344
- "normalized": false,
1345
- "rstrip": false,
1346
- "single_word": false,
1347
- "special": false
1348
- },
1349
- "198": {
1350
- "content": "</blockquote>",
1351
- "lstrip": false,
1352
- "normalized": false,
1353
- "rstrip": false,
1354
- "single_word": false,
1355
- "special": false
1356
- },
1357
- "199": {
1358
- "content": "<strong>",
1359
- "lstrip": false,
1360
- "normalized": false,
1361
- "rstrip": false,
1362
- "single_word": false,
1363
- "special": false
1364
- },
1365
- "200": {
1366
- "content": "<em>",
1367
- "lstrip": false,
1368
- "normalized": false,
1369
- "rstrip": false,
1370
- "single_word": false,
1371
- "special": false
1372
- },
1373
- "201": {
1374
- "content": "<b>",
1375
- "lstrip": false,
1376
- "normalized": false,
1377
- "rstrip": false,
1378
- "single_word": false,
1379
- "special": false
1380
- },
1381
- "202": {
1382
- "content": "<i>",
1383
- "lstrip": false,
1384
- "normalized": false,
1385
- "rstrip": false,
1386
- "single_word": false,
1387
- "special": false
1388
- },
1389
- "203": {
1390
- "content": "<u>",
1391
- "lstrip": false,
1392
- "normalized": false,
1393
- "rstrip": false,
1394
- "single_word": false,
1395
- "special": false
1396
- },
1397
- "204": {
1398
- "content": "<s>",
1399
- "lstrip": false,
1400
- "normalized": false,
1401
- "rstrip": false,
1402
- "single_word": false,
1403
- "special": false
1404
- },
1405
- "205": {
1406
- "content": "<sub>",
1407
- "lstrip": false,
1408
- "normalized": false,
1409
- "rstrip": false,
1410
- "single_word": false,
1411
- "special": false
1412
- },
1413
- "206": {
1414
- "content": "<sup>",
1415
- "lstrip": false,
1416
- "normalized": false,
1417
- "rstrip": false,
1418
- "single_word": false,
1419
- "special": false
1420
- },
1421
- "207": {
1422
- "content": "<code>",
1423
- "lstrip": false,
1424
- "normalized": false,
1425
- "rstrip": false,
1426
- "single_word": false,
1427
- "special": false
1428
- },
1429
- "208": {
1430
- "content": "</strong>",
1431
- "lstrip": false,
1432
- "normalized": false,
1433
- "rstrip": false,
1434
- "single_word": false,
1435
- "special": false
1436
- },
1437
- "209": {
1438
- "content": "</em>",
1439
- "lstrip": false,
1440
- "normalized": false,
1441
- "rstrip": false,
1442
- "single_word": false,
1443
- "special": false
1444
- },
1445
- "210": {
1446
- "content": "</b>",
1447
- "lstrip": false,
1448
- "normalized": false,
1449
- "rstrip": false,
1450
- "single_word": false,
1451
- "special": false
1452
- },
1453
- "211": {
1454
- "content": "</i>",
1455
- "lstrip": false,
1456
- "normalized": false,
1457
- "rstrip": false,
1458
- "single_word": false,
1459
- "special": false
1460
- },
1461
- "212": {
1462
- "content": "</u>",
1463
- "lstrip": false,
1464
- "normalized": false,
1465
- "rstrip": false,
1466
- "single_word": false,
1467
- "special": false
1468
- },
1469
- "213": {
1470
- "content": "</s>",
1471
- "lstrip": false,
1472
- "normalized": false,
1473
- "rstrip": false,
1474
- "single_word": false,
1475
- "special": false
1476
- },
1477
- "214": {
1478
- "content": "</sub>",
1479
- "lstrip": false,
1480
- "normalized": false,
1481
- "rstrip": false,
1482
- "single_word": false,
1483
- "special": false
1484
- },
1485
- "215": {
1486
- "content": "</sup>",
1487
- "lstrip": false,
1488
- "normalized": false,
1489
- "rstrip": false,
1490
- "single_word": false,
1491
- "special": false
1492
- },
1493
- "216": {
1494
- "content": "</code>",
1495
- "lstrip": false,
1496
- "normalized": false,
1497
- "rstrip": false,
1498
- "single_word": false,
1499
- "special": false
1500
- }
1501
- },
1502
- "additional_special_tokens": [
1503
- "<start_of_turn>",
1504
- "<end_of_turn>"
1505
- ],
1506
- "bos_token": "<bos>",
1507
- "clean_up_tokenization_spaces": false,
1508
- "eos_token": "<eos>",
1509
- "model_max_length": 1000000000000000019884624838656,
1510
- "pad_token": "<pad>",
1511
- "sp_model_kwargs": {},
1512
- "spaces_between_special_tokens": false,
1513
- "tokenizer_class": "GemmaTokenizer",
1514
- "unk_token": "<unk>",
1515
- "use_default_system_prompt": false
1516
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/sdxl-vae/README.md DELETED
@@ -1,39 +0,0 @@
1
- ---
2
- license: mit
3
- tags:
4
- - stable-diffusion
5
- - stable-diffusion-diffusers
6
- inference: false
7
- ---
8
- # SDXL - VAE
9
-
10
- #### How to use with 🧨 diffusers
11
- You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline`
12
- ```py
13
- from diffusers.models import AutoencoderKL
14
- from diffusers import StableDiffusionPipeline
15
-
16
- model = "stabilityai/your-stable-diffusion-model"
17
- vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
18
- pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae)
19
- ```
20
-
21
- ## Model
22
- [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9) is a [latent diffusion model](https://arxiv.org/abs/2112.10752), where the diffusion operates in a pretrained,
23
- learned (and fixed) latent space of an autoencoder.
24
- While the bulk of the semantic composition is done by the latent diffusion model,
25
- we can improve _local_, high-frequency details in generated images by improving the quality of the autoencoder.
26
- To this end, we train the same autoencoder architecture used for the original [Stable Diffusion](https://github.com/CompVis/stable-diffusion) at a larger batch-size (256 vs 9)
27
- and additionally track the weights with an exponential moving average (EMA).
28
- The resulting autoencoder outperforms the original model in all evaluated reconstruction metrics, see the table below.
29
-
30
-
31
- ## Evaluation
32
- _SDXL-VAE vs original kl-f8 VAE vs f8-ft-MSE_
33
- ### COCO 2017 (256x256, val, 5000 images)
34
- | Model | rFID | PSNR | SSIM | PSIM | Link | Comments
35
- |----------|------|--------------|---------------|---------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
36
- | | | | | | | |
37
- | SDXL-VAE | 4.42 | 24.7 +/- 3.9 | 0.73 +/- 0.13 | 0.88 +/- 0.27 | https://huggingface.co/stabilityai/sdxl-vae/blob/main/sdxl_vae.safetensors | as used in SDXL |
38
- | original | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
39
- | ft-MSE | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/sdxl-vae/config.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "_class_name": "AutoencoderKL",
3
- "_diffusers_version": "0.18.0.dev0",
4
- "_name_or_path": ".",
5
- "act_fn": "silu",
6
- "block_out_channels": [
7
- 128,
8
- 256,
9
- 512,
10
- 512
11
- ],
12
- "down_block_types": [
13
- "DownEncoderBlock2D",
14
- "DownEncoderBlock2D",
15
- "DownEncoderBlock2D",
16
- "DownEncoderBlock2D"
17
- ],
18
- "in_channels": 3,
19
- "latent_channels": 4,
20
- "layers_per_block": 2,
21
- "norm_num_groups": 32,
22
- "out_channels": 3,
23
- "sample_size": 1024,
24
- "scaling_factor": 0.13025,
25
- "up_block_types": [
26
- "UpDecoderBlock2D",
27
- "UpDecoderBlock2D",
28
- "UpDecoderBlock2D",
29
- "UpDecoderBlock2D"
30
- ]
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
visual_gen/sdxl-vae/diffusion_pytorch_model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1598f3d24932bcfe6634e8b618ea1e30ab1d57f5aad13a6d2de446d2199f2341
3
- size 334643268
 
 
 
 
visual_gen/sdxl-vae/gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text