--- base_model: google-t5/t5-base datasets: - gokaygokay/prompt-enhancer-dataset language: - en library_name: transformers license: apache-2.0 pipeline_tag: text2text-generation --- ```python from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM device = "cuda" if torch.cuda.is_available() else "cpu" # Model checkpoint model_checkpoint = "Hatman/Flux-Prompt-Enhance" # Tokenizer tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) # Model model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) enhancer = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty= 1.2, device=device) max_target_length = 256 prefix = "enhance prompt: " short_prompt = "beautiful house with text 'hello'" answer = enhancer(prefix + short_prompt, max_length=max_target_length) final_answer = answer[0]['generated_text'] print(final_answer) # a two-story house with white trim, large windows on the second floor, # three chimneys on the roof, green trees and shrubs in front of the house, # stone pathway leading to the front door, text on the house reads "hello" in all caps, # blue sky above, shadows cast by the trees, sunlight creating contrast on the house's facade, # some plants visible near the bottom right corner, overall warm and serene atmosphere. ```

A Script for Comfy

```python import torch import random import hashlib from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM class PromptEnhancer: def __init__(self): # Set up device self.device = "cuda" if torch.cuda.is_available() else "cpu" # Model checkpoint self.model_checkpoint = "Hatman/Flux-Prompt-Enhance" # Tokenizer and Model self.tokenizer = AutoTokenizer.from_pretrained(self.model_checkpoint) self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_checkpoint).to(self.device) # Initialize the node title and generated prompt self.node_title = "Prompt Enhancer" self.generated_prompt = "" @classmethod def INPUT_TYPES(cls): return { "required": { "prompt": ("STRING",), "seed": ("INT", {"default": 42, "min": 0, "max": 4294967295}), # Default seed, larger range "repetition_penalty": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0}), # Default repetition penalty "max_target_length": ("INT", {"default": 256, "min": 1, "max": 1024}), # Default max target length "temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0}), # Default temperature "top_k": ("INT", {"default": 50, "min": 1, "max": 1000}), # Default top-k "top_p": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0}), # Default top-p }, "optional": { "prompts_list": ("LIST",), # List of prompts } } RETURN_TYPES = ("STRING",) # Return only one string: the enhanced prompt FUNCTION = "enhance_prompt" CATEGORY = "TextEnhancement" def generate_large_seed(self, seed, prompt): # Combine the seed and prompt to create a unique string unique_string = f"{seed}_{prompt}" # Use a hash function to generate a large seed hash_object = hashlib.sha256(unique_string.encode()) large_seed = int(hash_object.hexdigest(), 16) % (2**32) return large_seed def enhance_prompt(self, prompt, seed=42, repetition_penalty=1.2, max_target_length=256, temperature=0.7, top_k=50, top_p=0.9, prompts_list=None): # Generate a large seed value large_seed = self.generate_large_seed(seed, prompt) # Set random seed for reproducibility torch.manual_seed(large_seed) random.seed(large_seed) # Determine the prompts to process prompts = [prompt] if prompts_list is None else prompts_list enhanced_prompts = [] for p in prompts: # Enhance prompt prefix = "enhance prompt: " input_text = prefix + p input_ids = self.tokenizer(input_text, return_tensors="pt").input_ids.to(self.device) # Generate a random seed for this generation random_seed = torch.randint(0, 2**32 - 1, (1,)).item() torch.manual_seed(random_seed) random.seed(random_seed) outputs = self.model.generate( input_ids, max_length=max_target_length, num_return_sequences=1, do_sample=True, temperature=temperature, repetition_penalty=repetition_penalty, top_k=top_k, top_p=top_p ) final_answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True) confidence_score = 1.0 # Default to 1.0 if no score is provided # Print the generated prompt and confidence score print(f"Generated Prompt: {final_answer} (Confidence: {confidence_score:.2f})") enhanced_prompts.append((f"Enhanced Prompt: {final_answer}", confidence_score)) # Update the node title and generated prompt if prompts_list is None: self.node_title = f"Prompt Enhancer (Confidence: {confidence_score:.2f})" self.generated_prompt = f"Enhanced Prompt: {final_answer}" return (f"Enhanced Prompt: {final_answer}",) else: self.node_title = "Prompt Enhancer (Multiple Prompts)" self.generated_prompt = "Multiple Prompts" return enhanced_prompts @property def NODE_TITLE(self): return self.node_title @property def GENERATED_PROMPT(self): return self.generated_prompt # A dictionary that contains all nodes you want to export with their names NODE_CLASS_MAPPINGS = { "PromptEnhancer": PromptEnhancer } # A dictionary that contains the friendly/humanly readable titles for the nodes NODE_DISPLAY_NAME_MAPPINGS = { "PromptEnhancer": "Prompt Enhancer" } ```