Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```python
|
| 2 |
+
|
| 3 |
+
from transformers import RobertaTokenizerFast, AutoModelForTokenClassification
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
|
| 6 |
+
def split_into_windows(examples):
|
| 7 |
+
return {'sentences': [examples['sentence']], 'labels': [examples["label"]]}
|
| 8 |
+
|
| 9 |
+
def concatenate_dict_value(dict_obj):
|
| 10 |
+
concatenated_dict = {}
|
| 11 |
+
for key, value in dict_obj.items():
|
| 12 |
+
flattened_list = []
|
| 13 |
+
for sublist in value:
|
| 14 |
+
if len(flattened_list) + len(sublist) <= 512:
|
| 15 |
+
for item in sublist:
|
| 16 |
+
flattened_list.append(item)
|
| 17 |
+
else:
|
| 18 |
+
print("Not all sentences were processed due to length")
|
| 19 |
+
break
|
| 20 |
+
concatenated_dict[key] = flattened_list
|
| 21 |
+
return concatenated_dict
|
| 22 |
+
|
| 23 |
+
def tokenize_and_align_labels(examples):
|
| 24 |
+
tokenized_inputs = tokenizer(examples["sentences"], truncation=True, max_length=512)
|
| 25 |
+
tokeized_inp_concat = concatenate_dict_value(tokenized_inputs)
|
| 26 |
+
tokenized_inputs["input_ids"] = tokeized_inp_concat['input_ids']
|
| 27 |
+
tokenized_inputs["attention_mask"] = tokeized_inp_concat['attention_mask']
|
| 28 |
+
word_ids = tokenized_inputs["input_ids"]
|
| 29 |
+
labels = []
|
| 30 |
+
count = 0
|
| 31 |
+
for word_idx in word_ids:
|
| 32 |
+
if word_idx == 2:
|
| 33 |
+
labels.append(examples[f"labels"][count])
|
| 34 |
+
count = count + 1
|
| 35 |
+
else:
|
| 36 |
+
labels.append(-100)
|
| 37 |
+
tokenized_inputs["labels"] = labels
|
| 38 |
+
return tokenized_inputs
|
| 39 |
+
|
| 40 |
+
model = AutoModelForTokenClassification.from_pretrained('HeTree/HeConE') # same as bert?? so no wories
|
| 41 |
+
tokenizer = RobertaTokenizerFast.from_pretrained('HeTree/HeConE')
|
| 42 |
+
raw_dataset = load_dataset('HeTree/MevakerConcSen')
|
| 43 |
+
window_size = 5
|
| 44 |
+
raw_dataset_window = raw_dataset.map(split_into_windows, batched=True, batch_size=window_size, remove_columns=raw_dataset['train'].column_names)
|
| 45 |
+
tokenized_dataset = raw_dataset_window.map(tokenize_and_align_labels, batched=False)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
```
|