File size: 22,194 Bytes
dc066a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import builtins
import datetime
import os
import time
import json
from collections import defaultdict, deque
from pathlib import Path
# from typing import Union
import pandas as pd
import torch
import torch.distributed as dist
import wandb
# from torch._six import inf
from torch import inf
import matplotlib.pyplot as plt
from torchvision import transforms
import cv2
from tqdm import tqdm
from typing import Union, List
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
if self.count == 0:
# Return a default value or handle the zero count scenario
return 0 # Or any other default value or handling mechanism
else:
return self.total / self.count
# return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
builtin_print = builtins.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
force = force or (get_world_size() > 8)
if is_master or force:
now = datetime.datetime.now().time()
builtin_print('[{}] '.format(now), end='') # print with time stamp
builtin_print(*args, **kwargs)
builtins.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['RANK'] = str(args.rank)
os.environ['WORLD_SIZE'] = str(args.world_size)
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
setup_for_distributed(is_master=True) # hack
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, suffix="", upload=True):
if suffix:
suffix = f"__{suffix}"
output_dir = Path(args.output_dir)
ckpt_name = f"checkpoint{suffix}.pth"
if loss_scaler is not None:
checkpoint_paths = [output_dir / ckpt_name]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
save_on_master(to_save, checkpoint_path)
if upload and is_main_process():
log_wandb_model(f"checkpoint{suffix}", checkpoint_path, epoch)
print("checkpoint sent to W&B (if)")
else:
client_state = {'epoch': epoch}
model.save_checkpoint(save_dir=args.output_dir, tag=ckpt_name, client_state=client_state)
if upload and is_main_process():
log_wandb_model(f"checkpoint{suffix}", output_dir / ckpt_name, epoch)
print("checkpoint sent to W&B (else)")
def log_wandb_model(title, path, epoch):
artifact = wandb.Artifact(title, type="model")
artifact.add_file(path)
artifact.metadata["epoch"] = epoch
wandb.log_artifact(artifact_or_path=artifact, name=title)
def load_model(args, model_without_ddp, optimizer, loss_scaler):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
if 'decoder_pos_embed' in checkpoint['model'] and checkpoint['model']['decoder_pos_embed'].shape != model_without_ddp.state_dict()['decoder_pos_embed'].shape:
print(f"Removing key decoder_pos_embed from pretrained checkpoint")
del checkpoint['model']['decoder_pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval):
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
def load_model_FSC(args, model_without_ddp):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print(f"Resume checkpoint {args.resume} ({checkpoint['epoch']})")
def load_model_FSC1(args, model_without_ddp):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
#model = timm.create_model('vit_base_patch16_224', pretrained=True)
#torch.save(model.state_dict(), './output_abnopre_dir/checkpoint-6657.pth')
checkpoint1 = torch.load('./output_abnopre_dir/checkpoint-6657.pth', map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
del checkpoint1['cls_token'],checkpoint1['pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
model_without_ddp.load_state_dict(checkpoint1, strict=False)
print("Resume checkpoint %s" % args.resume)
def load_model_FSC_full(args, model_without_ddp, optimizer, loss_scaler):
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != \
model_without_ddp.state_dict()['pos_embed'].shape:
print(f"Removing key pos_embed from pretrained checkpoint")
del checkpoint['model']['pos_embed']
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint and args.do_resume:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & scheduler!")
def all_reduce_mean(x):
world_size = get_world_size()
if world_size > 1:
x_reduce = torch.tensor(x).cuda()
dist.all_reduce(x_reduce)
x_reduce /= world_size
return x_reduce.item()
else:
return x
def plot_counts(res_csv: Union[str, List[str]], output_dir: str, suffix: str = "", smooth: bool = False):
if suffix:
suffix = f"_{suffix}"
if smooth:
suffix = f"_smooth{suffix}"
if type(res_csv) == str:
res_csv = [res_csv]
plt.figure(figsize=(15, 5))
for res in res_csv:
name = Path(res).parent.name
df = pd.read_csv(res)
print(df)
df.sort_values(by="name", inplace=True)
df.reset_index(drop=True, inplace=True)
df.index += 1
print(df)
if smooth:
time_arr = df.index[5:-5]
smooth_pred_mean = df['prediction'].iloc[5:-5].rolling(25).mean()
smooth_pred_std = df['prediction'].iloc[5:-5].rolling(25).std()
plt.plot(time_arr, smooth_pred_mean, label=name)
plt.fill_between(time_arr, smooth_pred_mean + smooth_pred_std, smooth_pred_mean - smooth_pred_std, alpha=.2)
plt.xlabel('Frame')
plt.ylabel('Count')
else:
plt.plot(df.index, df['prediction'], label=name)
plt.legend()
plt.savefig(os.path.join(output_dir, f'counts{suffix}.png'), dpi=300)
def write_zeroshot_annotations(p: Path):
with open(p / 'annotations.json', 'a') as split:
split.write('{\n')
for img in p.iterdir():
if img.is_file():
split.write(f' "{img.name}": {{\n' \
' "H": 960,\n' \
' "W": 1280,\n' \
' "box_examples_coordinates": [],\n' \
' "points": []\n' \
' },\n')
split.write("}")
with open(p / 'split.json', 'a') as split:
split.write('{\n "test":\n [\n')
for img in p.iterdir():
if img.is_file():
split.write(f' "{img.name}",\n')
split.write(" ]\n}")
def make_grid(imgs, h, w):
assert len(imgs) == 9
rows = []
for i in range(0, 9, 3):
row = torch.cat((imgs[i], imgs[i + 1], imgs[i + 2]), -1)
rows += [row]
grid = torch.cat((rows[0], rows[1], rows[2]), 0)
grid = transforms.Resize((h, w))(grid.unsqueeze(0))
return grid.squeeze(0)
def min_max(t):
t_shape = t.shape
t = t.view(t_shape[0], -1)
t -= t.min(1, keepdim=True)[0]
t /= t.max(1, keepdim=True)[0]
t = t.view(*t_shape)
return t
def min_max_np(v, new_min=0, new_max=1):
v_min, v_max = v.min(), v.max()
return (v - v_min) / (v_max - v_min) * (new_max - new_min) + new_min
def get_box_map(sample, pos, device, external=False):
box_map = torch.zeros([sample.shape[1], sample.shape[2]], device=device)
if external is False:
for rect in pos:
for i in range(rect[2] - rect[0]):
box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[1], sample.shape[2] - 1)] = 10
box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[3], sample.shape[2] - 1)] = 10
for i in range(rect[3] - rect[1]):
box_map[min(rect[0], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10
box_map[min(rect[2], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10
box_map = box_map.unsqueeze(0).repeat(3, 1, 1)
return box_map
timerfunc = time.perf_counter
class measure_time(object):
def __enter__(self):
self.start = timerfunc()
return self
def __exit__(self, typ, value, traceback):
self.duration = timerfunc() - self.start
def __add__(self, other):
return self.duration + other.duration
def __sub__(self, other):
return self.duration - other.duration
def __str__(self):
return str(self.duration)
def log_test_results(test_dir):
test_dir = Path(test_dir)
logs = []
for d in test_dir.iterdir():
if d.is_dir() and (d / "log.txt").exists():
print(d.name)
with open(d / "log.txt") as f:
last = f.readlines()[-1]
j = json.loads(last)
j['name'] = d.name
logs.append(j)
df = pd.DataFrame(logs)
df.sort_values('name', inplace=True, ignore_index=True)
cols = list(df.columns)
cols = cols[-1:] + cols[:-1]
df = df[cols]
df.to_csv(test_dir / "logs.csv", index=False)
COLORS = {
'muted blue': '#1f77b4',
'safety orange': '#ff7f0e',
'cooked asparagus green': '#2ca02c',
'brick red': '#d62728',
'muted purple': '#9467bd',
'chestnut brown': '#8c564b',
'raspberry yogurt pink': '#e377c2',
'middle gray': '#7f7f7f',
'curry yellow-green': '#bcbd22',
'blue-teal': '#17becf',
'muted blue light': '#419ede',
'safety orange light': '#ffa85b',
'cooked asparagus green light': '#4bce4b',
'brick red light': '#e36667'
}
def plot_test_results(test_dir):
import plotly.graph_objects as go
test_dir = Path(test_dir)
df = pd.read_csv(test_dir / "logs.csv")
df.sort_values('name', inplace=True)
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['name'], y=df['MAE'], line_color=COLORS['muted blue'],
mode='lines', name='MAE'))
fig.add_trace(go.Scatter(x=df['name'], y=df['RMSE'], line_color=COLORS['safety orange'],
mode='lines', name='RMSE'))
fig.add_trace(go.Scatter(x=df['name'], y=df['NAE'], line_color=COLORS['cooked asparagus green'],
mode='lines', name='NAE'))
fig.update_yaxes(type="log")
fig.write_image(test_dir / "plot.jpeg", scale=4)
fig.write_html(test_dir / "plot.html", auto_open=False)
def frames2vid(input_dir: str, output_file: str, pattern: str, fps: int, h=720, w=1280):
input_dir = Path(input_dir)
video_file = None
files = sorted(input_dir.glob(pattern))
video_file = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for img in tqdm(files, total=len(files)):
frame = cv2.imread(str(img))
frame = cv2.resize(frame, (w, h))
video_file.write(frame)
video_file.release()
|