File size: 15,511 Bytes
dc066a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import argparse
import datetime
import json
import PIL.Image
import numpy as np
import os
import time
import random
from pathlib import Path
import math
import sys
from PIL import Image
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from torch.utils.data import Dataset
import wandb
import timm
assert "0.4.5" <= timm.__version__ <= "0.4.9" # version check
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import util.lr_sched as lr_sched
from util.FSC147 import transform_pre_train
import models_mae_noct
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=8, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='./data/FSC147/', type=str,
help='dataset path')
parser.add_argument('--anno_file', default='annotation_FSC147_384.json', type=str,
help='annotation json file')
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
help='data split json file')
parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
help='images directory')
parser.add_argument('--gt_dir', default='gt_density_map_adaptive_384_VarV2', type=str,
help='ground truth directory')
parser.add_argument('--output_dir', default='./data/out/pre_4_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda:5',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='./weights/mae_pretrain_vit_base_full.pth', # mae_visualize_vit_base
help='resume from checkpoint')
# Training parameters
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Logging parameters
parser.add_argument('--log_dir', default='./logs/pre_4_dir',
help='path where to tensorboard log')
parser.add_argument("--title", default="CounTR_pretraining", type=str)
parser.add_argument("--wandb", default="counting", type=str)
parser.add_argument("--team", default="wsense", type=str)
parser.add_argument("--wandb_id", default=None, type=str)
parser.add_argument('--anno_file_negative', default='annotation_FSC147_negative1.json', type=str,
help='annotation json file')
return parser
os.environ["CUDA_LAUNCH_BLOCKING"] = '5'
class TrainData(Dataset):
def __init__(self):
self.img = data_split['train']
random.shuffle(self.img)
self.img_dir = im_dir
self.TransformPreTrain = transform_pre_train(data_path)
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
im_id = self.img[idx]
anno = annotations[im_id]
bboxes = anno['box_examples_coordinates']
# box_coordinates = anno.get('box_examples_coordinates', {}) # 获取图像的边界框坐标信息
# # print(box_coordinates)
# # 获取第一个类别的边界框坐标列表
# first_category = next(iter(box_coordinates), None)
# # print(first_category)
# first_category_bboxes = box_coordinates[first_category]
# if first_category_bboxes:
# # print(first_category_bboxes[0])
# bboxes = first_category_bboxes[0]
# else:
# bboxes = []
# # if first_category_bboxes:
# # bboxes = first_category_bboxes[0]
# # else:
# # pass
rects = list()
for bbox in bboxes:
x1 = bbox[0][0]
y1 = bbox[0][1]
x2 = bbox[2][0]
y2 = bbox[2][1]
rects.append([y1, x1, y2, x2])
image = Image.open('{}/{}'.format(im_dir, im_id))
image.load()
density_path = gt_dir / (im_id.split(".jpg")[0] + ".npy")
density = np.load(density_path).astype('float32')
sample = {'image': image, 'lines_boxes': rects, 'gt_density': density}
sample = self.TransformPreTrain(sample)
return sample['image']
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train = TrainData()
print(dataset_train)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if global_rank == 0:
if args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
if args.wandb is not None:
wandb_run = wandb.init(
config=args,
resume="allow",
project=args.wandb,
name=args.title,
# entity=args.team,
tags=["CounTR", "pretraining"],
id=args.wandb_id,
)
else:
wandb_run = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# define the model
model = models_mae_noct.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
# train one epoch
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
model_ = getattr(models_mae_noct, args.model)()
for data_iter_step, samples in enumerate(metric_logger.log_every(data_loader_train, print_freq, header)):
epoch_1000x = int((data_iter_step / len(data_loader_train) + epoch) * 1000)
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args)
samples = samples.to(device, non_blocking=True)
with torch.cuda.amp.autocast():
loss, pred, mask = model(samples, mask_ratio=args.mask_ratio)
loss_value = loss.item()
if data_iter_step % 2000 == 0:
preds = model_.unpatchify(pred)
preds = preds.float()
preds = torch.einsum('nchw->nhwc', preds)
preds = torch.clip(preds, 0, 1)
if log_writer is not None:
log_writer.add_images('reconstruction', preds, int(epoch), dataformats='NHWC')
if wandb_run is not None:
wandb_images = []
w_samples = torch.einsum('nchw->nhwc', samples.float()).clip(0, 1)
masks = F.interpolate(
mask.reshape(shape=(mask.shape[0], 1, int(mask.shape[1] ** .5), int(mask.shape[1] ** .5))),
size=(preds.shape[1], preds.shape[2]))
masks = torch.einsum('nchw->nhwc', masks.float())
combos = (w_samples + masks.repeat(1, 1, 1, 3)).clip(0, 1)
w_images = (torch.cat([w_samples, combos, preds], dim=2) * 255).detach().cpu()
print("w_images:", w_samples.shape, combos.shape, preds.shape, "-->", w_images.shape)
for i in range(w_images.shape[0]):
wi = w_images[i, :, :, :]
wandb_images += [wandb.Image(wi.numpy().astype(np.uint8),
caption=f"Prediction {i} at epoch {epoch}")]
wandb.log({f"reconstruction": wandb_images}, step=epoch_1000x, commit=False)
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if (data_iter_step + 1) % accum_iter == 0:
if log_writer is not None:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
if wandb_run is not None:
log = {"train/loss": loss_value_reduce, "train/lr": lr}
wandb.log(log, step=epoch_1000x, commit=True if data_iter_step == 0 else False)
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
train_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
# save train status and model
if args.output_dir and (epoch % 100 == 0 or epoch + 1 == args.epochs):
misc.save_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix=f"pretraining_{epoch}")
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, }
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
wandb.run.finish()
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
# load data
data_path = Path(args.data_path)
anno_file = data_path / args.anno_file
data_split_file = data_path / args.data_split_file
im_dir = data_path / args.im_dir
gt_dir = data_path / args.gt_dir
with open(anno_file) as f:
annotations = json.load(f)
with open(data_split_file) as f:
data_split = json.load(f)
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
|