File size: 24,569 Bytes
dc066a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
import argparse
import datetime
import json
import numpy as np
import os
import time
import random
from pathlib import Path
import sys
from PIL import Image
import torch.nn.functional as F
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset
import torchvision
import wandb
import timm
from tqdm import tqdm
assert "0.4.5" <= timm.__version__ <= "0.4.9" # version check
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import util.lr_sched as lr_sched
from util.FSC147 import transform_train, transform_val
import models_mae_cross
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=True)
parser.add_argument('--batch_size', default=26, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus)')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='./data/FSC147/', type=str,
help='dataset path')
parser.add_argument('--anno_file', default='annotation_FSC147_pos.json', type=str,
help='annotation json file for positive samples')
parser.add_argument('--anno_file_negative', default='./data/FSC147/annotation_FSC147_neg.json', type=str,
help='annotation json file for negative samples')
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
help='data split json file')
parser.add_argument('--class_file', default='ImageClasses_FSC147.txt', type=str,
help='class json file')
parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
help='images directory')
parser.add_argument('--output_dir', default='./data/out/fim6_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='./data/checkpoint.pth',
help='resume from checkpoint')
parser.add_argument('--do_resume', action='store_true',
help='Resume training (e.g. if crashed).')
# Training parameters
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--do_aug', action='store_true',
help='Perform data augmentation.')
parser.add_argument('--no_do_aug', action='store_false', dest='do_aug')
parser.set_defaults(do_aug=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Logging parameters
parser.add_argument("--title", default="count", type=str)
parser.add_argument("--wandb", default="240227", type=str)
parser.add_argument("--team", default="wsense", type=str)
parser.add_argument("--wandb_id", default=None, type=str)
return parser
os.environ["CUDA_LAUNCH_BLOCKING"] = '0'
class TrainData(Dataset):
def __init__(self, args, split='train', do_aug=True):
with open(args.anno_file) as f:
annotations = json.load(f)
# Load negative annotations
with open(args.anno_file_negative) as f:
neg_annotations = json.load(f)
with open(args.data_split_file) as f:
data_split = json.load(f)
self.img = data_split[split]
random.shuffle(self.img)
self.split = split
self.img_dir = im_dir
self.TransformTrain = transform_train(args, do_aug=do_aug)
self.TransformVal = transform_val(args)
self.annotations = annotations
self.neg_annotations = neg_annotations
self.im_dir = im_dir
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
im_id = self.img[idx]
anno = self.annotations[im_id]
bboxes = anno['box_examples_coordinates']
dots = np.array(anno['points'])
# 加载负样本的框
neg_anno = self.neg_annotations[im_id] # 假设每个图像ID在负样本注释中都有对应的条目
neg_bboxes = neg_anno['box_examples_coordinates']
rects = list()
for bbox in bboxes:
x1 = bbox[0][0]
y1 = bbox[0][1]
x2 = bbox[2][0]
y2 = bbox[2][1]
if x1 < 0:
x1 = 0
if x2 < 0:
x2 = 0
if y1 < 0:
y1 = 0
if y2 < 0:
y2 = 0
rects.append([y1, x1, y2, x2])
neg_rects = list()
for neg_bbox in neg_bboxes:
x1 = neg_bbox[0][0]
y1 = neg_bbox[0][1]
x2 = neg_bbox[2][0]
y2 = neg_bbox[2][1]
if x1 < 0:
x1 = 0
if x2 < 0:
x2 = 0
if y1 < 0:
y1 = 0
if y2 < 0:
y2 = 0
neg_rects.append([y1, x1, y2, x2])
image = Image.open('{}/{}'.format(self.im_dir, im_id))
if image.mode == "RGBA":
image = image.convert("RGB")
image.load()
m_flag = 0
sample = {'image': image, 'lines_boxes': rects, 'neg_lines_boxes': neg_rects,'dots': dots, 'id': im_id, 'm_flag': m_flag}
sample = self.TransformTrain(sample) if self.split == "train" else self.TransformVal(sample)
return sample['image'], sample['gt_density'], len(dots), sample['boxes'],sample['neg_boxes'], sample['pos'],sample['m_flag'], im_id
def main(args):
wandb_run = None
try:
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# if torch.cuda.is_available():
# device = torch.device("cuda:5")
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train = TrainData(args, do_aug=args.do_aug)
dataset_val = TrainData(args, split='val')
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if global_rank == 0:
if args.wandb is not None:
wandb_run = wandb.init(
config=args,
resume="allow",
project=args.wandb,
name=args.title,
# entity=args.team,
tags=["count", "finetuning"],
id=args.wandb_id,
)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# define the model
model = models_mae_cross.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
model.to(device)
model_without_ddp = model
# print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
min_MAE = 99999
print_freq = 50
save_freq = 50
misc.load_model_FSC_full(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs - args.start_epoch} epochs - rank {global_rank}")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
# train one epoch
model.train(True)
accum_iter = args.accum_iter
# some parameters in training
train_mae = torch.tensor([0], dtype=torch.float64, device=device)
train_mse = torch.tensor([0], dtype=torch.float64, device=device)
val_mae = torch.tensor([0], dtype=torch.float64, device=device)
val_mse = torch.tensor([0], dtype=torch.float64, device=device)
val_nae = torch.tensor([0], dtype=torch.float64, device=device)
optimizer.zero_grad()
for data_iter_step, (samples, gt_density, _, pos_boxes, neg_boxes, pos, m_flag, im_names) in enumerate(
tqdm(data_loader_train, total=len(data_loader_train), desc=f"Train [e. {epoch} - r. {global_rank}]")):
idx = data_iter_step + (epoch * len(data_loader_train))
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader_train) + epoch, args)
samples = samples.to(device, non_blocking=True, dtype=torch.half)
gt_density = gt_density.to(device, non_blocking=True, dtype=torch.half)
pos_boxes = pos_boxes.to(device, non_blocking=True, dtype=torch.half)
neg_boxes = neg_boxes.to(device, non_blocking=True, dtype=torch.half)
# 如果至少有一个图像在批处理中使用了Type 2 Mosaic,则禁止0-shot。
flag = 0
for i in range(m_flag.shape[0]):
flag += m_flag[i].item()
if flag == 0:
shot_num = random.randint(0, 3)
else:
shot_num = random.randint(1, 3)
with torch.cuda.amp.autocast():
pos_output = model(samples, pos_boxes, shot_num) # 正样本输出
# 计算正样本损失
mask = np.random.binomial(n=1, p=0.8, size=[384, 384])
masks = np.tile(mask, (pos_output.shape[0], 1))
masks = masks.reshape(pos_output.shape[0], 384, 384)
masks = torch.from_numpy(masks).to(device)
pos_loss = ((pos_output - gt_density) ** 2)
pos_loss = (pos_loss * masks / (384 * 384)).sum() / pos_output.shape[0]
# 负样本输出
with torch.cuda.amp.autocast():
neg_output = model(samples, neg_boxes, 1) # 负样本输出
cnt1 = 1-torch.exp(-(torch.abs(pos_output.sum()/60 - gt_density.sum()/60).mean()))
if neg_output.shape[0] == 0:
cnt2 = 0
else:
# cnt2 = torch.log(torch.abs((neg_output.sum() / neg_output.shape[0]) - 1).mean()+1)
cnt2 = 1-torch.exp(-(torch.abs((neg_output.sum() / (neg_output.shape[0]*60)) - 1).mean()))
cnt = cnt1+cnt2
# 计算正样本损失
mask = np.random.binomial(n=1, p=0.8, size=[384, 384])
masks = np.tile(mask, (neg_output.shape[0], 1))
masks = masks.reshape(neg_output.shape[0], 384, 384)
masks = torch.from_numpy(masks).to(device)
neg_loss = ((neg_output - gt_density) ** 2)
if neg_output.shape[0] == 0:
neg_loss = 1
else:
neg_loss = (neg_loss * masks / (384 * 384)).sum() / neg_output.shape[0]
margin = 0.5
contrastive_loss = torch.relu(pos_loss - neg_loss + margin)
total_loss = contrastive_loss+pos_loss
# 更新 MAE 和 RMSE
with torch.no_grad():
pred_cnt = (pos_output.view(len(samples), -1)).sum(1) / 60
gt_cnt = (gt_density.view(len(samples), -1)).sum(1) / 60
cnt_err = torch.abs(pred_cnt - gt_cnt).float()
batch_mae = cnt_err.double().mean()
batch_mse = (cnt_err ** 2).double().mean()
train_mae += batch_mae
train_mse += batch_mse
if not torch.isfinite(total_loss):
print("Loss is {}, stopping training".format(total_loss))
sys.exit(1)
total_loss /= accum_iter
loss_scaler(total_loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
lr = optimizer.param_groups[0]["lr"]
loss_value_reduce = misc.all_reduce_mean(total_loss)
if (data_iter_step + 1) % (print_freq * accum_iter) == 0 and (data_iter_step + 1) != len(data_loader_train) and data_iter_step != 0:
if wandb_run is not None:
log = {"train/loss": loss_value_reduce,
"train/lr": lr,
"train/MAE": batch_mae,
"train/RMSE": batch_mse ** 0.5}
wandb.log(log, step=idx)
# evaluation on Validation split
for val_samples, val_gt_density, val_n_ppl, val_boxes,_, val_pos, _, val_im_names in \
tqdm(data_loader_val, total=len(data_loader_val),
desc=f"Val [e. {epoch} - r. {global_rank}]"):
val_samples = val_samples.to(device, non_blocking=True, dtype=torch.half)
val_gt_density = val_gt_density.to(device, non_blocking=True, dtype=torch.half)
val_boxes = val_boxes.to(device, non_blocking=True, dtype=torch.half)
val_n_ppl = val_n_ppl.to(device, non_blocking=True)
shot_num = random.randint(0, 3)
with torch.no_grad():
with torch.cuda.amp.autocast():
val_output = model(val_samples, val_boxes, shot_num)
val_pred_cnt = (val_output.view(len(val_samples), -1)).sum(1) / 60
val_gt_cnt = (val_gt_density.view(len(val_samples), -1)).sum(1) / 60
# print('val_pred_cnt',val_pred_cnt)
# print('val_gt_cnt',val_gt_cnt)
val_cnt_err = torch.abs(val_pred_cnt - val_gt_cnt).float()
# print('val_cnt_err',val_cnt_err.mean())
val_cnt_err[val_cnt_err == float('inf')] = 0
val_mae += val_cnt_err.double().mean()
# val_mae += val_cnt_err
# print('val_mae',val_mae.mean())
val_cnt_err[val_cnt_err == float('inf')] = 0
val_mse += (val_cnt_err ** 2).double().mean()
# val_mse += (val_cnt_err ** 2)
_val_nae = val_cnt_err / val_gt_cnt
_val_nae[_val_nae == float('inf')] = 0
val_nae += _val_nae.double().mean()
# val_mae = val_mae/len(data_loader_val)
# val_mse = val_mse/len(data_loader_val)
# print('val_mae',val_mae)
# print('val_mse',val_mse)
# Output visualisation information to W&B
if wandb_run is not None:
train_wandb_densities = []
train_wandb_bboxes = []
val_wandb_densities = []
val_wandb_bboxes = []
black = torch.zeros([384, 384], device=device)
for i in range(pos_output.shape[0]):
# gt and predicted density
w_d_map = torch.stack([pos_output[i], black, black])
gt_map = torch.stack([gt_density[i], black, black])
box_map = misc.get_box_map(samples[i], pos[i], device)
w_gt_density = samples[i] / 2 + gt_map + box_map
w_d_map_overlay = samples[i] / 2 + w_d_map
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2)
w_densities = torch.clamp(w_densities, 0, 1)
train_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities),
caption=f"[E#{epoch}] {im_names[i]} ({torch.sum(gt_density[i]).item()}, {torch.sum(pos_output[i]).item()})")]
# exemplars
w_boxes = torch.cat([pos_boxes[i][x, :, :, :] for x in range(pos_boxes[i].shape[0])], 2)
train_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes),
caption=f"[E#{epoch}] {im_names[i]}")]
for i in range(val_output.shape[0]):
# gt and predicted density
w_d_map = torch.stack([val_output[i], black, black])
gt_map = torch.stack([val_gt_density[i], black, black])
box_map = misc.get_box_map(val_samples[i], val_pos[i], device)
w_gt_density = val_samples[i] / 2 + gt_map + box_map
w_d_map_overlay = val_samples[i] / 2 + w_d_map
w_densities = torch.cat([w_gt_density, w_d_map, w_d_map_overlay], dim=2)
w_densities = torch.clamp(w_densities, 0, 1)
val_wandb_densities += [wandb.Image(torchvision.transforms.ToPILImage()(w_densities),
caption=f"[E#{epoch}] {val_im_names[i]} ({torch.sum(val_gt_density[i]).item()}, {torch.sum(val_output[i]).item()})")]
# exemplars
w_boxes = torch.cat([val_boxes[i][x, :, :, :] for x in range(val_boxes[i].shape[0])], 2)
val_wandb_bboxes += [wandb.Image(torchvision.transforms.ToPILImage()(w_boxes),
caption=f"[E#{epoch}] {val_im_names[i]}")]
log = {"train/loss": loss_value_reduce,
"train/lr": lr,
"train/MAE": batch_mae,
"train/RMSE": batch_mse ** 0.5,
"val/MAE": val_mae / len(data_loader_val),
"val/RMSE": (val_mse / len(data_loader_val)) ** 0.5,
"val/NAE": val_nae / len(data_loader_val),
"train_densitss": train_wandb_densities,
"val_densites": val_wandb_densities,
"train_boxes": train_wandb_bboxes,
"val_boxes": val_wandb_bboxes}
wandb.log(log, step=idx)
# save train status and model
if args.output_dir and (epoch % save_freq == 0 or epoch + 1 == args.epochs) and epoch != 0:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix=f"finetuning_{epoch}", upload=epoch % 100 == 0)
elif True:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix=f"finetuning_last", upload=False)
if args.output_dir and val_mae / len(data_loader_val) < min_MAE:
min_MAE = val_mae / len(data_loader_val)
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix="finetuning_minMAE")
print(f'[Train Epoch #{epoch}] - MAE: {train_mae.item() / len(data_loader_train):5.2f}, RMSE: {(train_mse.item() / len(data_loader_train)) ** 0.5:5.2f}', flush=True)
print(f'[Val Epoch #{epoch}] - MAE: {val_mae.item() / len(data_loader_val):5.2f}, RMSE: {(val_mse.item() / len(data_loader_val)) ** 0.5:5.2f}, NAE: {val_nae.item() / len(data_loader_val):5.2f}', flush=True)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
finally:
if wandb_run is not None:
wandb.run.finish()
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
data_path = Path(args.data_path)
anno_file = data_path / args.anno_file
data_split_file = data_path / args.data_split_file
im_dir = data_path / args.im_dir
if args.do_aug:
class_file = data_path / args.class_file
else:
class_file = None
args.anno_file = anno_file
args.data_split_file = data_split_file
args.im_dir = im_dir
args.class_file = class_file
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
|