File size: 3,778 Bytes
e1aadda dc066a6 e1aadda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: apache-2.0
datasets:
- Theonewhomadethings/fsc147-controlnet-xl
metrics:
- mae
---
# VA-Count
[ECCV 2024] Zero-shot Object Counting with Good Exemplars
[[paper](https://arxiv.org/abs/2407.04948)]

# Zero-shot Object Counting with Good Exemplars
## News🚀
* **2024.09.27**: Our code is released.
* **2024.09.26**: Our inference code has been updated, and the code for selecting exemplars and the training code will be coming soon.
* **2024.07.02**: VA-Count is accepted by ECCV2024.
## Overview
Overview of the proposed method. The proposed method focuses on two main elements: the Exemplar Enhancement Module (EEM) for improving exemplar quality through a patch selection integrated with Grounding DINO, and the Noise Suppression Module (NSM) that distinguishes between positive and negative class samples using density maps. It employs a Contrastive Loss function to refine the precision in identifying target class objects from others in an image.
## Environment
```
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install timm==0.3.2
pip install numpy
pip install matplotlib tqdm
pip install tensorboard
pip install scipy
pip install imgaug
pip install opencv-python
pip3 install hub
```
### For more information on Grounding DINO, please refer to the following link:
[GroundingDINO](https://github.com/IDEA-Research/GroundingDINO)
We are very grateful for the Grounding DINO approach, which has been instrumental in our work!
## Datasets
* [FSC147](https://github.com/cvlab-stonybrook/LearningToCountEverything)
* [CARPK](https://lafi.github.io/LPN/)
Preparing the datasets as follows:
```
./data/
|--FSC147
| |--images_384_VarV2
| | |--2.jpg
| | |--3.jpg
| |--gt_density_map_adaptive_384_VarV2
| | |--2.npy
| | |--3.npy
| |--annotation_FSC147_384.json
| |--Train_Test_Val_FSC_147.json
| |--ImageClasses_FSC147.txt
| |--train.txt
| |--test.txt
| |--val.txt
|--CARPK/
| |--Annotations/
| |--Images/
| |--ImageSets/
```
## Inference
+ For inference, you can download the model from [Baidu-Disk](https://pan.baidu.com/s/11sbdDYLDfTOIPx5pZvBpmw?pwd=paeh), passward:paeh
```
python FSC_test.py --output_dir ./data/out/results_base --resume ./data/checkpoint_FSC.pth
```
## Single and Multiple Object Classifier Training
```
python datasetmake.py
python biclassify.py
```
+ You can also directly download the model from [Baidu-Disk](https://pan.baidu.com/s/1fOF0giI3yQpvGTiNFUI7cQ?pwd=psum), passward:psum Save it in ./data/out/classify/
## Generate exemplars
```
python grounding_pos.py --root_path ./data/FSC147/
python grounding_neg.py --root_path ./data/FSC147/
```
## Train
```
CUDA_VISIBLE_DEVICES=0 python FSC_pretrain.py \
--epochs 500 \
--warmup_epochs 10 \
--blr 1.5e-4 --weight_decay 0.05
```
+ You can also directly download the pre-train model from [Baidu-Disk](https://pan.baidu.com/s/1_-w_9I4bPA66pMZkHTrdrg?pwd=xynw), passward:xynw Save it in ./data/
```
CUDA_VISIBLE_DEVICES=0 python FSC_train.py --epochs 1000 --batch_size 8 --lr 1e-5 --output_dir ./data/out/
```
## Citation
```
@inproceedings{zhu2024zero,
title={Zero-shot Object Counting with Good Exemplars},
author={Zhu, Huilin and Yuan, Jingling and Yang, Zhengwei and Guo, Yu and Wang, Zheng and Zhong, Xian and He, Shengfeng},
booktitle={Proceedings of the European Conference on Computer Vision},
year={2024}
}
```
## Acknowledgement
This project is based on the implementation from [CounTR](https://github.com/Verg-Avesta/CounTR), we are very grateful for this work and [GroundingDINO](https://github.com/IDEA-Research/GroundingDINO).
#### If you have any questions, please get in touch with me (jsj_zhl@whut.edu.cn). |