File size: 7,929 Bytes
dc066a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import torch
import os
import inflect
import argparse
from GroundingDINO.groundingdino.util.inference import load_model, load_image, predict
from PIL import Image
import numpy as np
from torchvision.ops import box_convert
import json
import torch.nn as nn
import torch.nn.functional as F
import clip
# 定义全局变量
device = "cuda" if torch.cuda.is_available() else "cpu"
# 阈值设置
BOX_THRESHOLD = 0.02
TEXT_THRESHOLD = 0.02
BOX_THRESHOLD_class = 0.01
TEXT_THRESHOLD_class = 0.01
# 初始化inflect引擎
p = inflect.engine()
# 将单词转换为单数形式的函数
def to_singular(word):
singular_word = p.singular_noun(word)
return singular_word if singular_word else word
# 定义ClipClassifier类
class ClipClassifier(nn.Module):
def __init__(self, clip_model, embed_dim=512):
super(ClipClassifier, self).__init__()
self.clip_model = clip_model.to(device)
for param in self.clip_model.parameters():
param.requires_grad = False
self.fc = nn.Linear(clip_model.visual.output_dim, embed_dim)
self.classifier = nn.Linear(embed_dim, 2) # 二分类
def forward(self, images):
with torch.no_grad():
image_features = self.clip_model.encode_image(images).float().to(device)
x = self.fc(image_features)
x = F.relu(x)
logits = self.classifier(x)
return logits
# 初始化和加载二分类模型
clip_model, preprocess = clip.load("ViT-B/32", device)
binary_classifier = ClipClassifier(clip_model).to(device)
# 加载保存的权重
model_weights_path = './data/out/classify/best_model.pth'
binary_classifier.load_state_dict(torch.load(model_weights_path, map_location=device))
# 确认模型已经被设置为评估模式
binary_classifier.eval()
# 计算两个边界框的IoU
def calculate_iou(box1, box2):
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
intersection_x1 = max(x1, x2)
intersection_y1 = max(y1, y2)
intersection_x2 = min(x1 + w1, x2 + w2)
intersection_y2 = min(y1 + h1, y2 + h2)
intersection_area = max(intersection_x2 - intersection_x1, 0) * max(intersection_y2 - intersection_y1, 0)
box1_area = w1 * h1
box2_area = w2 * h2
union_area = box1_area + box2_area - intersection_area
iou = intersection_area / union_area if union_area > 0 else 0
return iou
# 检查patch是否有效
def is_valid_patch(patch, binary_classifier, preprocess, device):
if patch.size[0] <= 0 or patch.size[1] <= 0:
return False
patch_tensor = preprocess(patch).unsqueeze(0).to(device)
with torch.no_grad():
logits = binary_classifier(patch_tensor)
probabilities = torch.softmax(logits, dim=1)
prob_label_1 = probabilities[0, 1]
return prob_label_1.item() > 0.8
# 处理图片的主函数
def process_images(text_file_path, dataset_path, model, preprocess, binary_classifier, output_folder, device='cpu'):
boxes_dict = {}
with open(text_file_path, 'r') as f:
for line in f:
image_name, class_name = line.strip().split('\t')
print(f"Processing image: {image_name}")
text_prompt = class_name + ' .'
object_prompt = "object ."
image_path = os.path.join(dataset_path, image_name)
img = Image.open(image_path).convert("RGB")
image_source, image = load_image(image_path)
h, w, _ = image_source.shape
boxes_object, logits_object, _ = predict(model, image, object_prompt, BOX_THRESHOLD, TEXT_THRESHOLD)
boxes_class, logits_class, _ = predict(model, image, text_prompt, BOX_THRESHOLD_class, TEXT_THRESHOLD_class)
patches_object = box_convert(boxes_object, in_fmt="cxcywh", out_fmt="xyxy")
patches_class = box_convert(boxes_class, in_fmt="cxcywh", out_fmt="xyxy")
top_patches = []
iou_matrix = np.zeros((len(boxes_object), len(boxes_class)))
for j, box_class in enumerate(patches_class):
box_object_class = box_class.cpu().numpy() * np.array([w, h, w, h], dtype=np.float32)
x1_, y1_, x2_, y2_ = box_object_class.astype(int)
x1_, y1_, x2_, y2_ = max(x1_, 0), max(y1_, 0), min(x2_, w), min(y2_, h)
patch_ = img.crop((x1_, y1_, x2_, y2_))
if x2_ - x1_ > w / 2 or y2_ - y1_ > h / 2 or not is_valid_patch(patch_, binary_classifier, preprocess, device):
print(f"Skipping patch at box {box_class}")
continue
for i, box_object in enumerate(patches_object):
iou_matrix[i][j] = calculate_iou(box_object.cpu().numpy(), box_class.cpu().numpy())
for i, box_object in enumerate(patches_object):
max_iou = np.max(iou_matrix[i])
if max_iou < 0.5:
box_object = box_object.cpu().numpy() * np.array([w, h, w, h], dtype=np.float32)
x1, y1, x2, y2 = box_object.astype(int)
x1, y1, x2, y2 = max(x1, 0), max(y1, 0), min(x2, w), min(y2, h)
patch = img.crop((x1, y1, x2, y2))
if patch.size == (0, 0) or not is_valid_patch(patch, binary_classifier, preprocess, device) or x2 - x1 > w / 2 or y2 - y1 > h / 2 or y2 - y1 < 5 or x2 - x1 < 5:
print(f"Skipping patch at box {box_object}")
continue
patch_logits = logits_object[i]
top_patches.append((i, patch_logits.item()))
top_patches.sort(key=lambda x: x[1], reverse=True)
top_3_indices = [patch[0] for patch in top_patches[:3]]
while len(top_3_indices) < 3:
if len(top_3_indices) > 0:
top_3_indices.append(top_3_indices[-1])
else:
default_box = torch.tensor([0,0,20/w,20/h]).unsqueeze(0)
patches_object = torch.cat((patches_object, default_box.to(boxes_object.device)), dim=0)
top_3_indices.append(len(patches_object) - 1)
boxes_dict[image_name] = [patches_object[idx].cpu().numpy().tolist() * np.array([w, h, w, h], dtype=np.float32) for idx in top_3_indices]
return boxes_dict
def main(args):
# 设置固定的默认路径
model_config = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
model_weights = "GroundingDINO/weights/groundingdino_swint_ogc.pth"
# 根据root_path设置路径
text_file_path = os.path.join(args.root_path, "ImageClasses_FSC147.txt")
dataset_path = os.path.join(args.root_path, "images_384_VarV2")
input_json_path = os.path.join(args.root_path, "annotation_FSC147_384.json")
output_json_path = os.path.join(args.root_path, "annotation_FSC147_neg.json")
output_folder = os.path.join(args.root_path, "annotated_images_n")
os.makedirs(output_folder, exist_ok=True)
# 加载GroundingDINO模型
model = load_model(model_config, model_weights, device=device)
# 处理图片并生成边界框
boxes_dict = process_images(text_file_path, dataset_path, model, preprocess, binary_classifier, output_folder, device=device)
# 更新JSON文件
with open(input_json_path, 'r') as f:
data = json.load(f)
for image_name, boxes in boxes_dict.items():
if image_name in data:
new_boxes = [[[x1, y1], [x1, y2], [x2, y2], [x2, y1]] for x1, y1, x2, y2 in boxes]
data[image_name]["box_examples_coordinates"] = new_boxes
with open(output_json_path, 'w') as f:
json.dump(data, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Image Processing Script")
parser.add_argument("--root_path", type=str, required=True, help="Root path to the dataset and output files")
args = parser.parse_args()
main(args)
|