File size: 25,542 Bytes
dc066a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
from argparse import Namespace
import json
from pathlib import Path
import numpy as np
import random
from torchvision import transforms
import torch
import cv2
import torchvision.transforms.functional as TF
import scipy.ndimage as ndimage
from PIL import Image
import argparse
import imgaug.augmenters as iaa
from imgaug.augmentables import Keypoint, KeypointsOnImage
MAX_HW = 384
IM_NORM_MEAN = [0.485, 0.456, 0.406]
IM_NORM_STD = [0.229, 0.224, 0.225]
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=8, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='./data/FSC147/', type=str,
help='dataset path')
parser.add_argument('--anno_file', default='annotation_FSC147_384.json', type=str,
help='annotation json file')
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
help='data split json file')
parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
help='images directory')
parser.add_argument('--gt_dir', default='./data/FSC147/gt_density_map_adaptive_384_VarV2', type=str,
help='ground truth directory')
parser.add_argument('--output_dir', default='./data/out/pre_4_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='./weights/mae_pretrain_vit_base_full.pth', # mae_visualize_vit_base
help='resume from checkpoint')
# Training parameters
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Logging parameters
parser.add_argument('--log_dir', default='./logs/pre_4_dir',
help='path where to tensorboard log')
parser.add_argument("--title", default="CounTR_pretraining", type=str)
parser.add_argument("--wandb", default="counting", type=str)
parser.add_argument("--team", default="wsense", type=str)
parser.add_argument("--wandb_id", default=None, type=str)
parser.add_argument("--do_aug", default=True, type=bool)
parser.add_argument('--class_file', default='./data/FSC147/ImageClasses_FSC147.txt', type=str,
help='class json file')
return parser
args = get_args_parser()
args = args.parse_args()
class ResizeSomeImage(object):
def __init__(self, args):
args = get_args_parser()
args = args.parse_args()
# print(dir(args.im_dir.as_posix()))
self.data_path = Path(args.data_path)
self.im_dir = self.data_path/args.im_dir
anno_file = self.data_path/args.anno_file
data_split_file = self.data_path/args.data_split_file
with open(anno_file) as f:
self.annotations = json.load(f)
with open(data_split_file) as f:
data_split = json.load(f)
self.train_set = data_split['train']
self.class_dict = {}
if args.do_aug:
with open(args.class_file) as f:
for line in f:
key = line.split()[0]
val = line.split()[1:]
self.class_dict[key] = val
class ResizePreTrainImage(ResizeSomeImage):
"""
Resize the image so that:
1. Image is equal to 384 * 384
2. The new height and new width are divisible by 16
3. The aspect ratio is preserved
Density and boxes correctness not preserved(crop and horizontal flip)
"""
def __init__(self, args, MAX_HW=384):
super().__init__(args)
self.max_hw = MAX_HW
def __call__(self, sample):
image, lines_boxes, density = sample['image'], sample['lines_boxes'], sample['gt_density']
W, H = image.size
new_H = 16 * int(H / 16)
new_W = 16 * int(W / 16)
resized_image = transforms.Resize((new_H, new_W))(image)
resized_density = cv2.resize(density, (new_W, new_H))
orig_count = np.sum(density)
new_count = np.sum(resized_density)
if new_count > 0:
resized_density = resized_density * (orig_count / new_count)
boxes = list()
for box in lines_boxes:
box2 = [int(k) for k in box]
y1, x1, y2, x2 = box2[0], box2[1], box2[2], box2[3]
boxes.append([0, y1, x1, y2, x2])
boxes = torch.Tensor(boxes).unsqueeze(0)
resized_image = PreTrainNormalize(resized_image)
resized_density = torch.from_numpy(resized_density).unsqueeze(0).unsqueeze(0)
sample = {'image': resized_image, 'boxes': boxes, 'gt_density': resized_density}
return sample
class ResizeTrainImage(ResizeSomeImage):
"""
Resize the image so that:
1. Image is equal to 384 * 384
2. The new height and new width are divisible by 16
3. The aspect ratio is possibly preserved
Density map is cropped to have the same size(and position) with the cropped image
Exemplar boxes may be outside the cropped area.
Augmentation including Gaussian noise, Color jitter, Gaussian blur, Random affine, Random horizontal flip and Mosaic (or Random Crop if no Mosaic) is used.
"""
def __init__(self, args, MAX_HW=384, do_aug=True):
super().__init__(args)
self.max_hw = MAX_HW
self.do_aug = do_aug
def __call__(self, sample):
image, lines_boxes, neg_lines_boxes, dots, im_id, m_flag = sample['image'], sample['lines_boxes'], sample['neg_lines_boxes'], \
sample['dots'], sample['id'], sample['m_flag']
W, H = image.size
new_H = 16 * int(H / 16)
new_W = 16 * int(W / 16)
scale_factor_h = float(new_H) / H
scale_factor_w = float(new_W) / W
resized_image = transforms.Resize((new_H, new_W))(image)
resized_image = TTensor(resized_image)
resized_density = np.zeros((new_H, new_W), dtype='float32')
# Augmentation probability
aug_flag = self.do_aug
mosaic_flag = random.random() < 0.25
if aug_flag:
# Gaussian noise
noise = np.random.normal(0, 0.1, resized_image.size())
noise = torch.from_numpy(noise)
re_image = resized_image + noise
re_image = torch.clamp(re_image, 0, 1)
# Color jitter and Gaussian blur
re_image = Augmentation(re_image)
# Random affine
re1_image = re_image.transpose(0, 1).transpose(1, 2).numpy()
keypoints = []
for i in range(dots.shape[0]):
keypoints.append(Keypoint(x=min(new_W - 1, int(dots[i][0] * scale_factor_w)), y=min(new_H - 1, int(dots[i][1] * scale_factor_h))))
kps = KeypointsOnImage(keypoints, re1_image.shape)
seq = iaa.Sequential([
iaa.Affine(
rotate=(-15, 15),
scale=(0.8, 1.2),
shear=(-10, 10),
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}
)
])
re1_image, kps_aug = seq(image=re1_image, keypoints=kps)
# Produce dot annotation map
resized_density = np.zeros((resized_density.shape[0], resized_density.shape[1]), dtype='float32')
for i in range(len(kps.keypoints)):
if (int(kps_aug.keypoints[i].y) <= new_H - 1 and int(kps_aug.keypoints[i].x) <= new_W - 1) and not \
kps_aug.keypoints[i].is_out_of_image(re1_image):
resized_density[int(kps_aug.keypoints[i].y)][int(kps_aug.keypoints[i].x)] = 1
resized_density = torch.from_numpy(resized_density)
re_image = TTensor(re1_image)
# Random horizontal flip
flip_p = random.random()
if flip_p > 0.5:
re_image = TF.hflip(re_image)
resized_density = TF.hflip(resized_density)
# Random self mosaic
if mosaic_flag:
image_array = []
map_array = []
blending_l = random.randint(10, 20)
resize_l = 192 + 2 * blending_l
if dots.shape[0] >= 70:
for i in range(4):
length = random.randint(150, 384)
start_W = random.randint(0, new_W - length)
start_H = random.randint(0, new_H - length)
reresized_image1 = TF.crop(resized_image, start_H, start_W, length, length)
reresized_image1 = transforms.Resize((resize_l, resize_l))(reresized_image1)
reresized_density1 = np.zeros((resize_l, resize_l), dtype='float32')
for i in range(dots.shape[0]):
if start_H <= min(new_H - 1, int(dots[i][1] * scale_factor_h)) < start_H + length and start_W <= min(new_W - 1, int(dots[i][0] * scale_factor_w)) < start_W + length:
reresized_density1[min(resize_l-1,int((min(new_H-1,int(dots[i][1] * scale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_W-1,int(dots[i][0] * scale_factor_w))-start_W)*resize_l/length))]=1
reresized_density1 = torch.from_numpy(reresized_density1)
image_array.append(reresized_image1)
map_array.append(reresized_density1)
else:
m_flag = 1
prob = random.random()
if prob > 0.25:
gt_pos = random.randint(0, 3)
else:
gt_pos = random.randint(0, 4) # 5% 0 objects
for i in range(4):
if i == gt_pos:
Tim_id = im_id
r_image = resized_image
Tdots = dots
new_TH = new_H
new_TW = new_W
Tscale_factor_w = scale_factor_w
Tscale_factor_h = scale_factor_h
else:
Tim_id = self.train_set[random.randint(0, len(self.train_set) - 1)]
Tdots = np.array(self.annotations[Tim_id]['points'])
Timage = Image.open('{}/{}'.format(self.im_dir, Tim_id))
Timage.load()
new_TW = 16 * int(Timage.size[0] / 16)
new_TH = 16 * int(Timage.size[1] / 16)
Tscale_factor_w = float(new_TW) / Timage.size[0]
Tscale_factor_h = float(new_TH) / Timage.size[1]
r_image = TTensor(transforms.Resize((new_TH, new_TW))(Timage))
length = random.randint(250, 384)
start_W = random.randint(0, new_TW - length)
start_H = random.randint(0, new_TH - length)
r_image1 = TF.crop(r_image, start_H, start_W, length, length)
r_image1 = transforms.Resize((resize_l, resize_l))(r_image1)
r_density1 = np.zeros((resize_l, resize_l), dtype='float32')
# try:
# class_value = self.class_dict[im_id]
# Tim_value = self.class_dict[Tim_id]
# except KeyError:
# # Handle the case when the key doesn't exist
# class_value = None # Or any appropriate default value
# Tim_value = None # Or any appropriate default value
if self.class_dict[im_id] == self.class_dict[Tim_id]:
# if class_value == Tim_value:
# if im_id in self.class_dict and Tim_id in self.class_dict:
# if im_id in self.class_dict and Tim_id in self.class_dict:
# class_value = self.class_dict[im_id]
# Tim_value = self.class_dict[Tim_id]
# # Proceed with your comparison and processing here
# if class_value == Tim_value:
for i in range(Tdots.shape[0]):
if start_H <= min(new_TH - 1, int(Tdots[i][1] * Tscale_factor_h)) < start_H + length and start_W <= min(new_TW - 1, int(Tdots[i][0] * Tscale_factor_w)) < start_W + length:
r_density1[min(resize_l-1,int((min(new_TH-1, int(Tdots[i][1] * Tscale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_TW-1,int(Tdots[i][0] * Tscale_factor_w))-start_W)*resize_l/length))]=1
r_density1 = torch.from_numpy(r_density1)
image_array.append(r_image1)
map_array.append(r_density1)
reresized_image5 = torch.cat((image_array[0][:, blending_l:resize_l-blending_l], image_array[1][:, blending_l: resize_l-blending_l]), 1)
reresized_density5 = torch.cat((map_array[0][blending_l:resize_l-blending_l], map_array[1][blending_l: resize_l-blending_l]), 0)
for i in range(blending_l):
reresized_image5[:, 192+i] = image_array[0][:, resize_l-1-blending_l+i] * (blending_l-i)/(2 * blending_l) + reresized_image5[:, 192+i] * (i+blending_l)/(2*blending_l)
reresized_image5[:, 191-i] = image_array[1][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image5[:, 191-i] * (i+blending_l)/(2*blending_l)
reresized_image5 = torch.clamp(reresized_image5, 0, 1)
reresized_image6 = torch.cat((image_array[2][:, blending_l:resize_l-blending_l], image_array[3][:, blending_l: resize_l-blending_l]), 1)
reresized_density6 = torch.cat((map_array[2][blending_l:resize_l-blending_l], map_array[3][blending_l:resize_l-blending_l]), 0)
for i in range(blending_l):
reresized_image6[:, 192+i] = image_array[2][:, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 192+i] * (i+blending_l)/(2*blending_l)
reresized_image6[:, 191-i] = image_array[3][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 191-i] * (i+blending_l)/(2*blending_l)
reresized_image6 = torch.clamp(reresized_image6, 0, 1)
reresized_image = torch.cat((reresized_image5[:, :, blending_l:resize_l-blending_l], reresized_image6[:, :, blending_l:resize_l-blending_l]), 2)
reresized_density = torch.cat((reresized_density5[:, blending_l:resize_l-blending_l], reresized_density6[:, blending_l:resize_l-blending_l]), 1)
for i in range(blending_l):
reresized_image[:, :, 192+i] = reresized_image5[:, :, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 192+i] * (i+blending_l)/(2*blending_l)
reresized_image[:, :, 191-i] = reresized_image6[:, :, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 191-i] * (i+blending_l)/(2*blending_l)
reresized_image = torch.clamp(reresized_image, 0, 1)
else:
# Random 384*384 crop in a new_W*384 image and 384*new_W density map
start = random.randint(0, new_W - 1 - 383)
reresized_image = TF.crop(re_image, 0, start, 384, 384)
reresized_density = resized_density[:, start:start + 384]
else:
# Random 384*384 crop in a new_W*384 image and 384*new_W density map
for i in range(dots.shape[0]):
resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \
[min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1
resized_density = torch.from_numpy(resized_density)
start = random.randint(0, new_W - self.max_hw)
reresized_image = TF.crop(resized_image, 0, start, self.max_hw, self.max_hw)
reresized_density = resized_density[0:self.max_hw, start:start + self.max_hw]
# Gaussian distribution density map
reresized_density = ndimage.gaussian_filter(reresized_density.numpy(), sigma=(1, 1), order=0)
# Density map scale up
reresized_density = reresized_density * 60
reresized_density = torch.from_numpy(reresized_density)
# Crop bboxes and resize as 64x64
boxes = list()
rects = list()
cnt = 0
for box in lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
# print(y1,x1,y2,x2)
if not aug_flag:
rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)]))
bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
bbox = transforms.Resize((64, 64))(bbox)
boxes.append(bbox)
boxes = torch.stack(boxes)
neg_boxes = list()
neg_rects = list()
cnt = 0
for box in neg_lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
# print(y1,x1,y2,x2)
if not aug_flag:
neg_rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)]))
neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
neg_bbox = transforms.Resize((64, 64))(neg_bbox)
neg_boxes.append(neg_bbox)
neg_boxes = torch.stack(neg_boxes)
# if len(boxes) > 0:
# boxes = torch.stack(boxes) # 如果 boxes 非空,则正常执行 torch.stack
# boxes1 = boxes
# else:
# boxes = boxes1
# pass
# # 如果 boxes 为空,您可以选择跳过这个样本,或者提供一个默认的边界框
# # 例如,使用一个表示图像全区域的默认边界框
# default_box = torch.tensor([[0, 0],[0, 0],0, 0]) # 一个示例的默认边界框,具体值取决于您的应用
# boxes = default_box.unsqueeze(0) # 增加一个维度以符合 torch.stack 的要求
# # pass
if aug_flag:
pos = torch.tensor([])
else:
pos = torch.stack(rects)
# boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384]
sample = {'image': reresized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': reresized_density, 'm_flag': m_flag}
return sample
class ResizeValImage(ResizeSomeImage):
def __init__(self, args, MAX_HW=384):
super().__init__(args)
self.max_hw = MAX_HW
def __call__(self, sample):
image, dots, m_flag, lines_boxes, neg_lines_boxes = sample['image'], sample['dots'], sample['m_flag'], sample['lines_boxes'], sample['neg_lines_boxes']
W, H = image.size
new_H = new_W = self.max_hw
scale_factor_h = float(new_H) / H
scale_factor_w = float(new_W) / W
resized_image = transforms.Resize((new_H, new_W))(image)
resized_image = TTensor(resized_image)
# Resize density map
resized_density = np.zeros((new_H, new_W), dtype='float32')
for i in range(dots.shape[0]):
resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \
[min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1
# resized_density = ndimage.gaussian_filter(resized_density, sigma=4, radius=7, order=0)
resized_density = ndimage.gaussian_filter(resized_density, sigma=4, order=0)
resized_density = torch.from_numpy(resized_density) * 60
# Crop bboxes and resize as 64x64
boxes = list()
rects = list()
cnt = 0
for box in lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
rects.append(torch.tensor([y1, x1, y2, x2]))
bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
bbox = transforms.Resize((64, 64))(bbox)
boxes.append(bbox)
boxes = torch.stack(boxes)
pos = torch.stack(rects)
neg_boxes = list()
neg_rects = list()
cnt = 0
for box in neg_lines_boxes:
cnt += 1
if cnt > 3:
break
box2 = [int(k) for k in box]
y1 = int(box2[0] * scale_factor_h)
x1 = int(box2[1] * scale_factor_w)
y2 = int(box2[2] * scale_factor_h)
x2 = int(box2[3] * scale_factor_w)
neg_rects.append(torch.tensor([y1, x1, y2, x2]))
neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
neg_bbox = transforms.Resize((64, 64))(neg_bbox)
neg_boxes.append(neg_bbox)
neg_boxes = torch.stack(neg_boxes)
# boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384]
sample = {'image': resized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': resized_density, 'm_flag': m_flag}
return sample
PreTrainNormalize = transforms.Compose([
transforms.RandomResizedCrop(MAX_HW, scale=(0.2, 1.0), interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD)
])
TTensor = transforms.Compose([
transforms.ToTensor(),
])
Augmentation = transforms.Compose([
transforms.ColorJitter(brightness=0.25, contrast=0.15, saturation=0.15, hue=0.15),
transforms.GaussianBlur(kernel_size=(7, 9))
])
Normalize = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD)
])
def transform_train(args: Namespace, do_aug=True):
return transforms.Compose([ResizeTrainImage(args, MAX_HW, do_aug)])
def transform_val(args: Namespace):
return transforms.Compose([ResizeValImage(args, MAX_HW)])
def transform_pre_train(args: Namespace):
return transforms.Compose([ResizePreTrainImage(args, MAX_HW)])
|