File size: 25,542 Bytes
dc066a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from argparse import Namespace
import json
from pathlib import Path

import numpy as np
import random
from torchvision import transforms
import torch
import cv2
import torchvision.transforms.functional as TF
import scipy.ndimage as ndimage
from PIL import Image
import argparse
import imgaug.augmenters as iaa
from imgaug.augmentables import Keypoint, KeypointsOnImage

MAX_HW = 384
IM_NORM_MEAN = [0.485, 0.456, 0.406]
IM_NORM_STD = [0.229, 0.224, 0.225]

def get_args_parser():
    parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
    parser.add_argument('--batch_size', default=8, type=int,
                        help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
    parser.add_argument('--epochs', default=200, type=int)
    parser.add_argument('--accum_iter', default=1, type=int,
                        help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')

    # Model parameters
    parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
                        help='Name of model to train')

    parser.add_argument('--mask_ratio', default=0.5, type=float,
                        help='Masking ratio (percentage of removed patches).')

    parser.add_argument('--norm_pix_loss', action='store_true',
                        help='Use (per-patch) normalized pixels as targets for computing loss')
    parser.set_defaults(norm_pix_loss=False)

    # Optimizer parameters
    parser.add_argument('--weight_decay', type=float, default=0.05,
                        help='weight decay (default: 0.05)')
    parser.add_argument('--lr', type=float, default=None, metavar='LR',
                        help='learning rate (absolute lr)')
    parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
                        help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
    parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0')
    parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
                        help='epochs to warmup LR')

    # Dataset parameters
    parser.add_argument('--data_path', default='./data/FSC147/', type=str,
                        help='dataset path')
    parser.add_argument('--anno_file', default='annotation_FSC147_384.json', type=str,
                        help='annotation json file')
    parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
                        help='data split json file')
    parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
                        help='images directory')
    parser.add_argument('--gt_dir', default='./data/FSC147/gt_density_map_adaptive_384_VarV2', type=str,
                        help='ground truth directory')
    parser.add_argument('--output_dir', default='./data/out/pre_4_dir',
                        help='path where to save, empty for no saving')
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='./weights/mae_pretrain_vit_base_full.pth',  # mae_visualize_vit_base
                        help='resume from checkpoint')

    # Training parameters
    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--num_workers', default=10, type=int)
    parser.add_argument('--pin_mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
    parser.set_defaults(pin_mem=True)

    # Distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://',
                        help='url used to set up distributed training')

    # Logging parameters
    parser.add_argument('--log_dir', default='./logs/pre_4_dir',
                        help='path where to tensorboard log')
    parser.add_argument("--title", default="CounTR_pretraining", type=str)
    parser.add_argument("--wandb", default="counting", type=str)
    parser.add_argument("--team", default="wsense", type=str)
    parser.add_argument("--wandb_id", default=None, type=str)
    parser.add_argument("--do_aug", default=True, type=bool)
    parser.add_argument('--class_file', default='./data/FSC147/ImageClasses_FSC147.txt', type=str,
                        help='class json file')
    return parser

args = get_args_parser()
args = args.parse_args()

class ResizeSomeImage(object):
    def __init__(self, args):
        args = get_args_parser()
        args = args.parse_args()
        # print(dir(args.im_dir.as_posix()))
        self.data_path = Path(args.data_path)
        self.im_dir = self.data_path/args.im_dir
        anno_file = self.data_path/args.anno_file
        data_split_file = self.data_path/args.data_split_file

        with open(anno_file) as f:
            self.annotations = json.load(f)

        with open(data_split_file) as f:
            data_split = json.load(f)

        self.train_set = data_split['train']

        self.class_dict = {}
        if args.do_aug:
            with open(args.class_file) as f:
                for line in f:
                    key = line.split()[0]
                    val = line.split()[1:]
                    self.class_dict[key] = val


class ResizePreTrainImage(ResizeSomeImage):
    """
    Resize the image so that:
        1. Image is equal to 384 * 384
        2. The new height and new width are divisible by 16
        3. The aspect ratio is preserved
    Density and boxes correctness not preserved(crop and horizontal flip)
    """

    def __init__(self, args, MAX_HW=384):
        super().__init__(args)
        self.max_hw = MAX_HW

    def __call__(self, sample):
        image, lines_boxes, density = sample['image'], sample['lines_boxes'], sample['gt_density']

        W, H = image.size

        new_H = 16 * int(H / 16)
        new_W = 16 * int(W / 16)
        resized_image = transforms.Resize((new_H, new_W))(image)
        resized_density = cv2.resize(density, (new_W, new_H))
        orig_count = np.sum(density)
        new_count = np.sum(resized_density)

        if new_count > 0:
            resized_density = resized_density * (orig_count / new_count)

        boxes = list()
        for box in lines_boxes:
            box2 = [int(k) for k in box]
            y1, x1, y2, x2 = box2[0], box2[1], box2[2], box2[3]
            boxes.append([0, y1, x1, y2, x2])

        boxes = torch.Tensor(boxes).unsqueeze(0)
        resized_image = PreTrainNormalize(resized_image)
        resized_density = torch.from_numpy(resized_density).unsqueeze(0).unsqueeze(0)
        sample = {'image': resized_image, 'boxes': boxes, 'gt_density': resized_density}
        return sample


class ResizeTrainImage(ResizeSomeImage):
    """
    Resize the image so that:
        1. Image is equal to 384 * 384
        2. The new height and new width are divisible by 16
        3. The aspect ratio is possibly preserved
    Density map is cropped to have the same size(and position) with the cropped image
    Exemplar boxes may be outside the cropped area.
    Augmentation including Gaussian noise, Color jitter, Gaussian blur, Random affine, Random horizontal flip and Mosaic (or Random Crop if no Mosaic) is used.
    """

    def __init__(self, args, MAX_HW=384, do_aug=True):
        super().__init__(args)
        self.max_hw = MAX_HW
        self.do_aug = do_aug

    def __call__(self, sample):
        image, lines_boxes, neg_lines_boxes, dots, im_id, m_flag = sample['image'], sample['lines_boxes'], sample['neg_lines_boxes'], \
            sample['dots'], sample['id'], sample['m_flag']

        W, H = image.size

        new_H = 16 * int(H / 16)
        new_W = 16 * int(W / 16)
        scale_factor_h = float(new_H) / H
        scale_factor_w = float(new_W) / W
        resized_image = transforms.Resize((new_H, new_W))(image)
        resized_image = TTensor(resized_image)
        resized_density = np.zeros((new_H, new_W), dtype='float32')

        # Augmentation probability
        aug_flag = self.do_aug
        mosaic_flag = random.random() < 0.25

        if aug_flag:
            # Gaussian noise
            noise = np.random.normal(0, 0.1, resized_image.size())
            noise = torch.from_numpy(noise)
            re_image = resized_image + noise
            re_image = torch.clamp(re_image, 0, 1)

            # Color jitter and Gaussian blur
            re_image = Augmentation(re_image)

            # Random affine
            re1_image = re_image.transpose(0, 1).transpose(1, 2).numpy()
            keypoints = []
            for i in range(dots.shape[0]):
                keypoints.append(Keypoint(x=min(new_W - 1, int(dots[i][0] * scale_factor_w)), y=min(new_H - 1, int(dots[i][1] * scale_factor_h))))
            kps = KeypointsOnImage(keypoints, re1_image.shape)

            seq = iaa.Sequential([
                iaa.Affine(
                    rotate=(-15, 15),
                    scale=(0.8, 1.2),
                    shear=(-10, 10),
                    translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}
                )
            ])
            re1_image, kps_aug = seq(image=re1_image, keypoints=kps)

            # Produce dot annotation map
            resized_density = np.zeros((resized_density.shape[0], resized_density.shape[1]), dtype='float32')
            for i in range(len(kps.keypoints)):
                if (int(kps_aug.keypoints[i].y) <= new_H - 1 and int(kps_aug.keypoints[i].x) <= new_W - 1) and not \
                        kps_aug.keypoints[i].is_out_of_image(re1_image):
                    resized_density[int(kps_aug.keypoints[i].y)][int(kps_aug.keypoints[i].x)] = 1
            resized_density = torch.from_numpy(resized_density)

            re_image = TTensor(re1_image)

            # Random horizontal flip
            flip_p = random.random()
            if flip_p > 0.5:
                re_image = TF.hflip(re_image)
                resized_density = TF.hflip(resized_density)    

            # Random self mosaic
            if mosaic_flag:
                image_array = []
                map_array = []
                blending_l = random.randint(10, 20)
                resize_l = 192 + 2 * blending_l
                if dots.shape[0] >= 70:
                    for i in range(4):
                        length = random.randint(150, 384)
                        start_W = random.randint(0, new_W - length)
                        start_H = random.randint(0, new_H - length)
                        reresized_image1 = TF.crop(resized_image, start_H, start_W, length, length)
                        reresized_image1 = transforms.Resize((resize_l, resize_l))(reresized_image1)
                        reresized_density1 = np.zeros((resize_l, resize_l), dtype='float32')
                        for i in range(dots.shape[0]):
                            if start_H <= min(new_H - 1, int(dots[i][1] * scale_factor_h)) < start_H + length and start_W <= min(new_W - 1, int(dots[i][0] * scale_factor_w)) < start_W + length:
                                reresized_density1[min(resize_l-1,int((min(new_H-1,int(dots[i][1] * scale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_W-1,int(dots[i][0] * scale_factor_w))-start_W)*resize_l/length))]=1
                        reresized_density1 = torch.from_numpy(reresized_density1)
                        image_array.append(reresized_image1)
                        map_array.append(reresized_density1)
                else:
                    m_flag = 1
                    prob = random.random()
                    if prob > 0.25:
                        gt_pos = random.randint(0, 3)
                    else:
                        gt_pos = random.randint(0, 4)  # 5% 0 objects
                    for i in range(4):
                        if i == gt_pos:
                            Tim_id = im_id
                            r_image = resized_image
                            Tdots = dots
                            new_TH = new_H
                            new_TW = new_W
                            Tscale_factor_w = scale_factor_w
                            Tscale_factor_h = scale_factor_h
                        else:
                            Tim_id = self.train_set[random.randint(0, len(self.train_set) - 1)]
                            Tdots = np.array(self.annotations[Tim_id]['points'])
                            Timage = Image.open('{}/{}'.format(self.im_dir, Tim_id))
                            Timage.load()
                            new_TW = 16 * int(Timage.size[0] / 16)
                            new_TH = 16 * int(Timage.size[1] / 16)
                            Tscale_factor_w = float(new_TW) / Timage.size[0]
                            Tscale_factor_h = float(new_TH) / Timage.size[1]
                            r_image = TTensor(transforms.Resize((new_TH, new_TW))(Timage))

                        length = random.randint(250, 384)
                        start_W = random.randint(0, new_TW - length)
                        start_H = random.randint(0, new_TH - length)
                        r_image1 = TF.crop(r_image, start_H, start_W, length, length)
                        r_image1 = transforms.Resize((resize_l, resize_l))(r_image1)
                        r_density1 = np.zeros((resize_l, resize_l), dtype='float32')
                        # try:
                        #     class_value = self.class_dict[im_id]
                        #     Tim_value = self.class_dict[Tim_id]
                        # except KeyError:
                        #     # Handle the case when the key doesn't exist
                        #     class_value = None  # Or any appropriate default value
                        #     Tim_value = None  # Or any appropriate default value
                        if self.class_dict[im_id] == self.class_dict[Tim_id]:
                        # if class_value == Tim_value:
                        # if im_id in self.class_dict and Tim_id in self.class_dict:
                        # if im_id in self.class_dict and Tim_id in self.class_dict:
                        #     class_value = self.class_dict[im_id]
                        #     Tim_value = self.class_dict[Tim_id]
    
                        # # Proceed with your comparison and processing here
                        # if class_value == Tim_value:
                            for i in range(Tdots.shape[0]):
                                if start_H <= min(new_TH - 1, int(Tdots[i][1] * Tscale_factor_h)) < start_H + length and start_W <= min(new_TW - 1, int(Tdots[i][0] * Tscale_factor_w)) < start_W + length:
                                    r_density1[min(resize_l-1,int((min(new_TH-1, int(Tdots[i][1] * Tscale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_TW-1,int(Tdots[i][0] * Tscale_factor_w))-start_W)*resize_l/length))]=1
                        r_density1 = torch.from_numpy(r_density1)
                        image_array.append(r_image1)
                        map_array.append(r_density1)

                reresized_image5 = torch.cat((image_array[0][:, blending_l:resize_l-blending_l], image_array[1][:, blending_l: resize_l-blending_l]), 1)
                reresized_density5 = torch.cat((map_array[0][blending_l:resize_l-blending_l], map_array[1][blending_l: resize_l-blending_l]), 0)
                for i in range(blending_l):
                        reresized_image5[:, 192+i] = image_array[0][:, resize_l-1-blending_l+i] * (blending_l-i)/(2 * blending_l) + reresized_image5[:, 192+i] * (i+blending_l)/(2*blending_l)
                        reresized_image5[:, 191-i] = image_array[1][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image5[:, 191-i] * (i+blending_l)/(2*blending_l)
                reresized_image5 = torch.clamp(reresized_image5, 0, 1)

                reresized_image6 = torch.cat((image_array[2][:, blending_l:resize_l-blending_l], image_array[3][:, blending_l: resize_l-blending_l]), 1)
                reresized_density6 = torch.cat((map_array[2][blending_l:resize_l-blending_l], map_array[3][blending_l:resize_l-blending_l]), 0)
                for i in range(blending_l):
                        reresized_image6[:, 192+i] = image_array[2][:, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 192+i] * (i+blending_l)/(2*blending_l)
                        reresized_image6[:, 191-i] = image_array[3][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 191-i] * (i+blending_l)/(2*blending_l)
                reresized_image6 = torch.clamp(reresized_image6, 0, 1)

                reresized_image = torch.cat((reresized_image5[:, :, blending_l:resize_l-blending_l], reresized_image6[:, :, blending_l:resize_l-blending_l]), 2)
                reresized_density = torch.cat((reresized_density5[:, blending_l:resize_l-blending_l], reresized_density6[:, blending_l:resize_l-blending_l]), 1)
                for i in range(blending_l):
                        reresized_image[:, :, 192+i] = reresized_image5[:, :, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 192+i] * (i+blending_l)/(2*blending_l)
                        reresized_image[:, :, 191-i] = reresized_image6[:, :, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 191-i] * (i+blending_l)/(2*blending_l)
                reresized_image = torch.clamp(reresized_image, 0, 1)

            else:
                # Random 384*384 crop in a new_W*384 image and 384*new_W density map
                start = random.randint(0, new_W - 1 - 383)
                reresized_image = TF.crop(re_image, 0, start, 384, 384)
                reresized_density = resized_density[:, start:start + 384]

        else:
            # Random 384*384 crop in a new_W*384 image and 384*new_W density map
            for i in range(dots.shape[0]):
                resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \
                                [min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1
            resized_density = torch.from_numpy(resized_density)
            start = random.randint(0, new_W - self.max_hw)
            reresized_image = TF.crop(resized_image, 0, start, self.max_hw, self.max_hw)
            reresized_density = resized_density[0:self.max_hw, start:start + self.max_hw]

        # Gaussian distribution density map
        reresized_density = ndimage.gaussian_filter(reresized_density.numpy(), sigma=(1, 1), order=0)

        # Density map scale up
        reresized_density = reresized_density * 60
        reresized_density = torch.from_numpy(reresized_density)

        # Crop bboxes and resize as 64x64
        boxes = list()
        rects = list()
        cnt = 0
        for box in lines_boxes:
            cnt += 1
            if cnt > 3:
                break
            box2 = [int(k) for k in box]
            y1 = int(box2[0] * scale_factor_h)
            x1 = int(box2[1] * scale_factor_w)
            y2 = int(box2[2] * scale_factor_h)
            x2 = int(box2[3] * scale_factor_w)
            # print(y1,x1,y2,x2)
            if not aug_flag:
                rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)]))
            bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
            bbox = transforms.Resize((64, 64))(bbox)
            boxes.append(bbox)
        boxes = torch.stack(boxes)
        neg_boxes = list()
        neg_rects = list()
        cnt = 0
        for box in neg_lines_boxes:
            cnt += 1
            if cnt > 3:
                break
            box2 = [int(k) for k in box]
            y1 = int(box2[0] * scale_factor_h)
            x1 = int(box2[1] * scale_factor_w)
            y2 = int(box2[2] * scale_factor_h)
            x2 = int(box2[3] * scale_factor_w)
            # print(y1,x1,y2,x2)
            if not aug_flag:
                neg_rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)]))
            neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
            neg_bbox = transforms.Resize((64, 64))(neg_bbox)
            neg_boxes.append(neg_bbox)
        neg_boxes = torch.stack(neg_boxes)
        # if len(boxes) > 0:
        #     boxes = torch.stack(boxes)  # 如果 boxes 非空,则正常执行 torch.stack
        #     boxes1 = boxes
        # else:
        #     boxes = boxes1
        #     pass
        # # 如果 boxes 为空,您可以选择跳过这个样本,或者提供一个默认的边界框
        # # 例如,使用一个表示图像全区域的默认边界框
        #     default_box = torch.tensor([[0, 0],[0, 0],0, 0])  # 一个示例的默认边界框,具体值取决于您的应用
        #     boxes = default_box.unsqueeze(0)  # 增加一个维度以符合 torch.stack 的要求
        #     # pass
        if aug_flag:
            pos = torch.tensor([])
        else:
            pos = torch.stack(rects)

        # boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384]
        sample = {'image': reresized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': reresized_density, 'm_flag': m_flag}

        return sample


class ResizeValImage(ResizeSomeImage):
    def __init__(self, args, MAX_HW=384):
        super().__init__(args)
        self.max_hw = MAX_HW

    def __call__(self, sample):
        image, dots, m_flag, lines_boxes, neg_lines_boxes = sample['image'], sample['dots'], sample['m_flag'], sample['lines_boxes'], sample['neg_lines_boxes']

        W, H = image.size

        new_H = new_W = self.max_hw
        scale_factor_h = float(new_H) / H
        scale_factor_w = float(new_W) / W
        resized_image = transforms.Resize((new_H, new_W))(image)
        resized_image = TTensor(resized_image)

        # Resize density map
        resized_density = np.zeros((new_H, new_W), dtype='float32')
        for i in range(dots.shape[0]):
            resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \
                           [min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1
        # resized_density = ndimage.gaussian_filter(resized_density, sigma=4, radius=7, order=0)
        resized_density = ndimage.gaussian_filter(resized_density, sigma=4, order=0)
        resized_density = torch.from_numpy(resized_density) * 60

        # Crop bboxes and resize as 64x64
        boxes = list()
        rects = list()
        cnt = 0
        for box in lines_boxes:
            cnt += 1
            if cnt > 3:
                break
            box2 = [int(k) for k in box]
            y1 = int(box2[0] * scale_factor_h)
            x1 = int(box2[1] * scale_factor_w)
            y2 = int(box2[2] * scale_factor_h)
            x2 = int(box2[3] * scale_factor_w)
            rects.append(torch.tensor([y1, x1, y2, x2]))
            bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
            bbox = transforms.Resize((64, 64))(bbox)
            boxes.append(bbox)
        boxes = torch.stack(boxes)
        pos = torch.stack(rects)
        neg_boxes = list()
        neg_rects = list()
        cnt = 0
        for box in neg_lines_boxes:
            cnt += 1
            if cnt > 3:
                break
            box2 = [int(k) for k in box]
            y1 = int(box2[0] * scale_factor_h)
            x1 = int(box2[1] * scale_factor_w)
            y2 = int(box2[2] * scale_factor_h)
            x2 = int(box2[3] * scale_factor_w)
            neg_rects.append(torch.tensor([y1, x1, y2, x2]))
            neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1]
            neg_bbox = transforms.Resize((64, 64))(neg_bbox)
            neg_boxes.append(neg_bbox)
        neg_boxes = torch.stack(neg_boxes)
        # boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384]
        sample = {'image': resized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': resized_density, 'm_flag': m_flag}
        return sample


PreTrainNormalize = transforms.Compose([
    transforms.RandomResizedCrop(MAX_HW, scale=(0.2, 1.0), interpolation=3),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    # transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD)
])

TTensor = transforms.Compose([
    transforms.ToTensor(),
])

Augmentation = transforms.Compose([
    transforms.ColorJitter(brightness=0.25, contrast=0.15, saturation=0.15, hue=0.15),
    transforms.GaussianBlur(kernel_size=(7, 9))
])

Normalize = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD)
])


def transform_train(args: Namespace, do_aug=True):
    return transforms.Compose([ResizeTrainImage(args, MAX_HW, do_aug)])

def transform_val(args: Namespace):
    return transforms.Compose([ResizeValImage(args, MAX_HW)])

def transform_pre_train(args: Namespace):
    return transforms.Compose([ResizePreTrainImage(args, MAX_HW)])