|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import torch.hub |
|
|
from itertools import repeat |
|
|
import collections.abc |
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): |
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
|
'survival rate' as the argument. |
|
|
""" |
|
|
if drop_prob == 0. or not training: |
|
|
return x |
|
|
keep_prob = 1 - drop_prob |
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
|
if keep_prob > 0.0 and scale_by_keep: |
|
|
random_tensor.div_(keep_prob) |
|
|
return x * random_tensor |
|
|
|
|
|
class DropPath(nn.Module): |
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
|
""" |
|
|
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): |
|
|
super(DropPath, self).__init__() |
|
|
self.drop_prob = drop_prob |
|
|
self.scale_by_keep = scale_by_keep |
|
|
|
|
|
def forward(self, x): |
|
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) |
|
|
|
|
|
def _ntuple(n): |
|
|
def parse(x): |
|
|
if isinstance(x, collections.abc.Iterable): |
|
|
return x |
|
|
return tuple(repeat(x, n)) |
|
|
return parse |
|
|
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
|
|
class Mlp(nn.Module): |
|
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
|
""" |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
drop_probs = to_2tuple(drop) |
|
|
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.drop1 = nn.Dropout(drop_probs[0]) |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop2 = nn.Dropout(drop_probs[1]) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop1(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop2(x) |
|
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
def forward(self, x): |
|
|
B, N, C = x.shape |
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
attn = attn.softmax(dim=-1) |
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
return x |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
self.wq = nn.Linear(dim, dim, bias=qkv_bias) |
|
|
self.wk = nn.Linear(dim, dim, bias=qkv_bias) |
|
|
self.wv = nn.Linear(dim, dim, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
def forward(self, x, y): |
|
|
B, Nx, C = x.shape |
|
|
Ny = y.shape[1] |
|
|
|
|
|
q = self.wq(x).reshape(B, Nx, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
|
|
k = self.wk(y).reshape(B, Ny, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
|
|
v = self.wv(y).reshape(B, Ny, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
attn = attn.softmax(dim=-1) |
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, Nx, C) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
return x |
|
|
|
|
|
class CrossAttentionBlock(nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
|
|
|
self.norm0 = norm_layer(dim) |
|
|
self.selfattn = Attention( |
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
self.drop_path0 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = CrossAttention( |
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
self.norm2 = norm_layer(dim) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop) |
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
def forward(self, x, y): |
|
|
x = x + self.drop_path0(self.selfattn(self.norm0(x))) |
|
|
x = x + self.drop_path1(self.attn(self.norm1(x), y)) |
|
|
x = x + self.drop_path2(self.mlp(self.norm2(x))) |
|
|
return x |
|
|
|