import argparse import json import numpy as np import os from pathlib import Path from PIL import Image, ImageDraw import matplotlib.pyplot as plt import scipy.ndimage as ndimage import pandas as pd import random import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.utils.data import Dataset import torchvision from torchvision import transforms import torchvision.transforms.functional as TF import timm from util.FSC147 import transform_train, transform_val from tqdm import tqdm assert "0.4.5" <= timm.__version__ <= "0.4.9" # version check import util.misc as misc import models_mae_cross def get_args_parser(): parser = argparse.ArgumentParser('MAE pre-training', add_help=False) # Model parameters parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--mask_ratio', default=0.5, type=float, help='Masking ratio (percentage of removed patches).') parser.add_argument('--norm_pix_loss', action='store_true', help='Use (per-patch) normalized pixels as targets for computing loss') parser.set_defaults(norm_pix_loss=False) # Dataset parameters parser.add_argument('--data_path', default='./data/FSC147/', type=str, help='dataset path') parser.add_argument('--anno_file', default='annotation_FSC147_positive.json', type=str, help='annotation json file') parser.add_argument('--anno_file_negative', default='./data/FSC147/annotation_FSC147_neg2.json', type=str, help='annotation json file') parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str, help='data split json file') parser.add_argument('--im_dir', default='images_384_VarV2', type=str, help='images directory') parser.add_argument('--output_dir', default='./Image', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='./output_fim6_dir/checkpoint-0.pth', help='resume from checkpoint') parser.add_argument('--external', action='store_true', help='Set this param for using external exemplars') parser.add_argument('--box_bound', default=-1, type=int, help='The max number of exemplars to be considered') parser.add_argument('--split', default="test", type=str) # Training parameters parser.add_argument('--num_workers', default=0, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) parser.add_argument('--normalization', default=True, help='Set to False to disable test-time normalization') # Distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser os.environ["CUDA_LAUNCH_BLOCKING"] = '5' class TestData(Dataset): def __init__(self, args, split='val', do_aug=True): with open(data_path/args.anno_file) as f: annotations = json.load(f) # Load negative annotations with open(args.anno_file_negative) as f: neg_annotations = json.load(f) with open(data_path/args.data_split_file) as f: data_split = json.load(f) self.img = data_split[split] random.shuffle(self.img) self.split = split self.img_dir = im_dir # self.TransformTrain = transform_train(args, do_aug=do_aug) self.TransformVal = transform_val(args) self.annotations = annotations self.neg_annotations = neg_annotations self.im_dir = im_dir def __len__(self): return len(self.img) def __getitem__(self, idx): im_id = self.img[idx] anno = self.annotations[im_id] bboxes = anno['box_examples_coordinates'] dots = np.array(anno['points']) # 加载负样本的框 neg_anno = self.neg_annotations[im_id] # 假设每个图像ID在负样本注释中都有对应的条目 neg_bboxes = neg_anno['box_examples_coordinates'] rects = list() for bbox in bboxes: x1 = bbox[0][0] y1 = bbox[0][1] x2 = bbox[2][0] y2 = bbox[2][1] if x1 < 0: x1 = 0 if x2 < 0: x2 = 0 if y1 < 0: y1 = 0 if y2 < 0: y2 = 0 rects.append([y1, x1, y2, x2]) neg_rects = list() for neg_bbox in neg_bboxes: x1 = neg_bbox[0][0] y1 = neg_bbox[0][1] x2 = neg_bbox[2][0] y2 = neg_bbox[2][1] if x1 < 0: x1 = 0 if x2 < 0: x2 = 0 if y1 < 0: y1 = 0 if y2 < 0: y2 = 0 neg_rects.append([y1, x1, y2, x2]) image = Image.open('{}/{}'.format(self.im_dir, im_id)) if image.mode == "RGBA": image = image.convert("RGB") image.load() m_flag = 0 sample = {'image': image, 'lines_boxes': rects,'neg_lines_boxes': neg_rects, 'dots': dots, 'id': im_id, 'm_flag': m_flag} sample = self.TransformTrain(sample) if self.split == "train" else self.TransformVal(sample) # if self.split == "train": # sample = self.TransformTrain(sample) # # print(sample.keys()) return sample['image'], sample['gt_density'], len(dots), sample['boxes'], sample['neg_boxes'], sample['pos'],sample['m_flag'], im_id def batched_rmse(predictions, targets, batch_size=100): """ 分批计算RMSE :param predictions: 模型预测的值,一个PyTorch张量 :param targets: 真实的值,一个PyTorch张量,与predictions形状相同 :param batch_size: 每个批次的大小 :return: RMSE值 """ total_mse = 0.0 total_count = 0 # 分批处理 for i in range(0, len(predictions), batch_size): batch_predictions = predictions[i:i+batch_size] batch_targets = targets[i:i+batch_size] # 确保使用float64进行计算以提高精度 batch_predictions = batch_predictions.double() batch_targets = batch_targets.double() # 计算批次的MSE difference = batch_predictions - batch_targets mse = torch.mean(difference ** 2) # 累加MSE和计数 total_mse += mse * len(batch_predictions) total_count += len(batch_predictions) # 计算平均MSE avg_mse = total_mse / total_count # 计算RMSE rmse_val = torch.sqrt(avg_mse) return rmse_val def batched_mae(predictions, targets, batch_size=100): """ 分批计算MAE :param predictions: 模型预测的值,一个PyTorch张量 :param targets: 真实的值,一个PyTorch张量,与predictions形状相同 :param batch_size: 每个批次的大小 :return: MAE值 """ total_mae = 0.0 total_count = 0 # 分批处理 for i in range(0, len(predictions), batch_size): batch_predictions = predictions[i:i+batch_size] batch_targets = targets[i:i+batch_size] # 计算批次的绝对误差 absolute_errors = torch.abs(batch_predictions - batch_targets) # 累加绝对误差和计数 total_mae += torch.sum(absolute_errors) total_count += len(batch_predictions) # 计算平均绝对误差 avg_mae = total_mae / total_count return avg_mae def main(args): misc.init_distributed_mode(args) print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) print("{}".format(args).replace(', ', ',\n')) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + misc.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True # dataset_test = TestData(external=args.external, box_bound=args.box_bound, split=args.split) dataset_test = TestData(args, split='test') num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_test = torch.utils.data.DistributedSampler( dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=True ) data_loader_test = torch.utils.data.DataLoader( dataset_test, sampler=sampler_test, batch_size=1, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False, ) # define the model model = models_mae_cross.__dict__[args.model](norm_pix_loss=args.norm_pix_loss) model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module misc.load_model_FSC(args=args, model_without_ddp=model_without_ddp) print(f"Start testing.") # test model.eval() # some parameters in training train_mae = 0 train_rmse = 0 train_nae = 0 tot_load_time = 0 tot_infer_time = 0 loss_array = [] gt_array = [] pred_arr = [] name_arr = [] empties = [] total_mae = 0.0 total_mse = 0.0 total_nae = 0.0 total_count = 0 sub_batch_size = 50 for val_samples, val_gt_density, val_n_ppl, val_boxes,neg_val_boxes, val_pos, _, val_im_names in tqdm(data_loader_test, total=len(data_loader_test), desc="Validation"): val_samples = val_samples.to(device, non_blocking=True, dtype=torch.float) # 使用更高精度 val_gt_density = val_gt_density.to(device, non_blocking=True, dtype=torch.float) val_boxes = val_boxes.to(device, non_blocking=True, dtype=torch.float) neg_val_boxes = neg_val_boxes.to(device, non_blocking=True, dtype=torch.float) num_samples = val_samples.size(0) total_count += num_samples for i in range(0, num_samples, sub_batch_size): sub_val_samples = val_samples[i:i+sub_batch_size] sub_val_gt_density = val_gt_density[i:i+sub_batch_size] with torch.no_grad(): with torch.cuda.amp.autocast(): sub_val_output = model(sub_val_samples, val_boxes[i:i+sub_batch_size], 3) with torch.no_grad(): with torch.cuda.amp.autocast(): neg_sub_val_output = model(sub_val_samples, neg_val_boxes[i:i+sub_batch_size], 3) # output = torch.clamp((sub_val_output-neg_sub_val_output),min=0) sub_val_pred_cnt = torch.abs(sub_val_output.sum()) / 60 # sub_val_pred_cnt = torch.abs(output.sum()) / 60 # neg_sub_val_pred_cnt = torch.abs(neg_sub_val_output.sum()) / 60 sub_val_gt_cnt = sub_val_gt_density.sum() / 60 sub_val_cnt_err = torch.abs(sub_val_pred_cnt - sub_val_gt_cnt) # 逐项添加并检查 if not torch.isinf(sub_val_cnt_err) and not torch.isnan(sub_val_cnt_err): batch_mae = sub_val_cnt_err.item() batch_mse = sub_val_cnt_err.item() ** 2 batch_nae = sub_val_cnt_err.item() / sub_val_gt_cnt.item() if sub_val_gt_cnt.item() != 0 else 0 total_mae += batch_mae * sub_val_samples.size(0) total_mse += batch_mse * sub_val_samples.size(0) total_nae += batch_nae * sub_val_samples.size(0) sub_val_pred_cnt = (sub_val_pred_cnt).int() final_mae = total_mae / total_count final_rmse = (total_mse / total_count) ** 0.5 final_nae = total_nae / total_count print(f'MAE: {final_mae}, RMSE: {final_rmse}, NAE: {final_nae}') if __name__ == '__main__': args = get_args_parser() args = args.parse_args() # load data data_path = Path(args.data_path) anno_file = data_path / args.anno_file data_split_file = data_path / args.data_split_file im_dir = data_path / args.im_dir with open(anno_file) as f: annotations = json.load(f) with open(data_split_file) as f: data_split = json.load(f) if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)