--- license: apache-2.0 datasets: - Theonewhomadethings/fsc147-controlnet-xl metrics: - mae --- # VA-Count [ECCV 2024] Zero-shot Object Counting with Good Exemplars [[paper](https://arxiv.org/abs/2407.04948)] ![figure](figure.png) # Zero-shot Object Counting with Good Exemplars ## News🚀 * **2024.09.27**: Our code is released. * **2024.09.26**: Our inference code has been updated, and the code for selecting exemplars and the training code will be coming soon. * **2024.07.02**: VA-Count is accepted by ECCV2024. ## Overview Overview of the proposed method. The proposed method focuses on two main elements: the Exemplar Enhancement Module (EEM) for improving exemplar quality through a patch selection integrated with Grounding DINO, and the Noise Suppression Module (NSM) that distinguishes between positive and negative class samples using density maps. It employs a Contrastive Loss function to refine the precision in identifying target class objects from others in an image. ## Environment ``` pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html pip install timm==0.3.2 pip install numpy pip install matplotlib tqdm pip install tensorboard pip install scipy pip install imgaug pip install opencv-python pip3 install hub ``` ### For more information on Grounding DINO, please refer to the following link: [GroundingDINO](https://github.com/IDEA-Research/GroundingDINO) We are very grateful for the Grounding DINO approach, which has been instrumental in our work! ## Datasets * [FSC147](https://github.com/cvlab-stonybrook/LearningToCountEverything) * [CARPK](https://lafi.github.io/LPN/) Preparing the datasets as follows: ``` ./data/ |--FSC147 | |--images_384_VarV2 | | |--2.jpg | | |--3.jpg | |--gt_density_map_adaptive_384_VarV2 | | |--2.npy | | |--3.npy | |--annotation_FSC147_384.json | |--Train_Test_Val_FSC_147.json | |--ImageClasses_FSC147.txt | |--train.txt | |--test.txt | |--val.txt |--CARPK/ | |--Annotations/ | |--Images/ | |--ImageSets/ ``` ## Inference + For inference, you can download the model from [Baidu-Disk](https://pan.baidu.com/s/11sbdDYLDfTOIPx5pZvBpmw?pwd=paeh), passward:paeh ``` python FSC_test.py --output_dir ./data/out/results_base --resume ./data/checkpoint_FSC.pth ``` ## Single and Multiple Object Classifier Training ``` python datasetmake.py python biclassify.py ``` + You can also directly download the model from [Baidu-Disk](https://pan.baidu.com/s/1fOF0giI3yQpvGTiNFUI7cQ?pwd=psum), passward:psum Save it in ./data/out/classify/ ## Generate exemplars ``` python grounding_pos.py --root_path ./data/FSC147/ python grounding_neg.py --root_path ./data/FSC147/ ``` ## Train ``` CUDA_VISIBLE_DEVICES=0 python FSC_pretrain.py \ --epochs 500 \ --warmup_epochs 10 \ --blr 1.5e-4 --weight_decay 0.05 ``` + You can also directly download the pre-train model from [Baidu-Disk](https://pan.baidu.com/s/1_-w_9I4bPA66pMZkHTrdrg?pwd=xynw), passward:xynw Save it in ./data/ ``` CUDA_VISIBLE_DEVICES=0 python FSC_train.py --epochs 1000 --batch_size 8 --lr 1e-5 --output_dir ./data/out/ ``` ## Citation ``` @inproceedings{zhu2024zero, title={Zero-shot Object Counting with Good Exemplars}, author={Zhu, Huilin and Yuan, Jingling and Yang, Zhengwei and Guo, Yu and Wang, Zheng and Zhong, Xian and He, Shengfeng}, booktitle={Proceedings of the European Conference on Computer Vision}, year={2024} } ``` ## Acknowledgement This project is based on the implementation from [CounTR](https://github.com/Verg-Avesta/CounTR), we are very grateful for this work and [GroundingDINO](https://github.com/IDEA-Research/GroundingDINO). #### If you have any questions, please get in touch with me (jsj_zhl@whut.edu.cn).