import torch import os import clip import inflect import argparse from torchvision.ops import box_convert from GroundingDINO.groundingdino.util.inference import load_model, load_image, predict from PIL import Image import numpy as np import json import torch.nn as nn import torch.nn.functional as F # 定义全局变量 device = "cuda" if torch.cuda.is_available() else "cpu" BOX_THRESHOLD = 0.05 TEXT_THRESHOLD = 0.05 # 初始化inflect引擎 p = inflect.engine() # 定义 ClipClassifier 类 class ClipClassifier(nn.Module): def __init__(self, clip_model, embed_dim=512): super(ClipClassifier, self).__init__() self.clip_model = clip_model.to(device) for param in self.clip_model.parameters(): param.requires_grad = False self.fc = nn.Linear(clip_model.visual.output_dim, embed_dim) self.classifier = nn.Linear(embed_dim, 2) # 二分类 def forward(self, images): with torch.no_grad(): image_features = self.clip_model.encode_image(images).float().to(device) x = self.fc(image_features) x = F.relu(x) logits = self.classifier(x) return logits # 加载 CLIP 模型 clip_model, preprocess = clip.load("ViT-B/32", device) clip_model.eval() # 初始化并加载二分类模型 binary_classifier = ClipClassifier(clip_model).to(device) model_weights_path = './data/out/classify/best_model.pth' binary_classifier.load_state_dict(torch.load(model_weights_path, map_location=device)) binary_classifier.eval() # 判断 patch 是否有效 def is_valid_patch(patch, binary_classifier, preprocess, device): if patch.size[0] <= 0 or patch.size[1] <= 0: return False patch_tensor = preprocess(patch).unsqueeze(0).to(device) with torch.no_grad(): logits = binary_classifier(patch_tensor) probabilities = torch.softmax(logits, dim=1) prob_label_1 = probabilities[0, 1] return prob_label_1.item() > 0.8 # 处理图片的主函数 def process_images(text_file_path, dataset_path, model, preprocess, clip_model, output_folder, device='cpu'): boxes_dict = {} with open(text_file_path, 'r') as f: for line in f: image_name, class_name = line.strip().split('\t') print(f"Processing image: {image_name}") text_prompt = class_name + ' .' image_path = os.path.join(dataset_path, image_name) img = Image.open(image_path).convert("RGB") image_source, image = load_image(image_path) h, w, _ = image_source.shape boxes, logits, _ = predict(model, image, text_prompt, BOX_THRESHOLD, TEXT_THRESHOLD) patches = box_convert(boxes, in_fmt="cxcywh", out_fmt="xyxy") top_patches = [] for i, (box, logit) in enumerate(zip(patches, logits)): box = box.cpu().numpy() * np.array([w, h, w, h], dtype=np.float32) x1, y1, x2, y2 = box.astype(int) x1, y1, x2, y2 = max(x1, 0), max(y1, 0), min(x2, w), min(y2, h) patch = img.crop((x1, y1, x2, y2)) if patch.size == (0, 0) or not is_valid_patch(patch, binary_classifier, preprocess, device) or x2 - x1 > w / 2 or y2 - y1 > h / 2 or y2 - y1 < 5 or x2 - x1 < 5: print(f"Skipping patch due to binary classifier at box {box}") continue top_patches.append((i, logit)) top_patches.sort(key=lambda x: x[1], reverse=True) top_3_indices = [patch[0] for patch in top_patches[:3]] # 确保每张图像都有三个边界框 while len(top_3_indices) < 3: if len(top_3_indices) > 0: top_3_indices.append(top_3_indices[-1]) else: default_box = torch.tensor([0, 0, 20 / w, 20 / h]).unsqueeze(0) patches = torch.cat((patches, default_box.to(boxes.device)), dim=0) top_3_indices.append(len(patches) - 1) boxes_dict[image_name] = [patches[idx].cpu().numpy().tolist() * np.array([w, h, w, h], dtype=np.float32) for idx in top_3_indices] return boxes_dict # 主函数 def main(args): # 设置固定的默认路径 model_config = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" model_weights = "GroundingDINO/weights/groundingdino_swint_ogc.pth" output_folder = os.path.join(args.root_path, "annotated_images") # 根据 root_path 设置路径 text_file_path = os.path.join(args.root_path, "ImageClasses_FSC147.txt") dataset_path = os.path.join(args.root_path, "images_384_VarV2") input_json_path = os.path.join(args.root_path, "annotation_FSC147_384_old.json") output_json_path = os.path.join(args.root_path, "annotation_FSC147_pos.json") os.makedirs(output_folder, exist_ok=True) # 加载 GroundingDINO 模型 model = load_model(model_config, model_weights, device=device) # 处理图片并生成边界框 boxes_dict = process_images(text_file_path, dataset_path, model, preprocess, clip_model, output_folder, device=device) # 更新 JSON 文件 with open(input_json_path, 'r') as f: data = json.load(f) for image_name, boxes in boxes_dict.items(): if image_name in data: new_boxes = [[[x1, y1], [x1, y2], [x2, y2], [x2, y1]] for x1, y1, x2, y2 in boxes] data[image_name]["box_examples_coordinates"] = new_boxes with open(output_json_path, 'w') as f: json.dump(data, f, indent=4) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Image Processing Script") parser.add_argument("--root_path", type=str, required=True, help="Root path to the dataset and output files") args = parser.parse_args() main(args)