import time from functools import partial import math import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.utils from timm.models.vision_transformer import PatchEmbed, Block from models_crossvit import CrossAttentionBlock from util.pos_embed import get_2d_sincos_pos_embed class SupervisedMAE(nn.Module): def __init__(self, img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24, num_heads=16, decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16, mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False): super().__init__() # -------------------------------------------------------------------------- # MAE encoder specifics self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim), requires_grad=False) # fixed sin-cos embedding self.blocks = nn.ModuleList([ Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- # MAE decoder specifics self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding self.shot_token = nn.Parameter(torch.zeros(512)) # Exemplar encoder with CNN self.decoder_proj1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.InstanceNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(2) #[3,64,64]->[64,32,32] ) self.decoder_proj2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.InstanceNorm2d(128), nn.ReLU(inplace=True), nn.MaxPool2d(2) #[64,32,32]->[128,16,16] ) self.decoder_proj3 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), nn.InstanceNorm2d(256), nn.ReLU(inplace=True), nn.MaxPool2d(2) # [128,16,16]->[256,8,8] ) self.decoder_proj4 = nn.Sequential( nn.Conv2d(256, decoder_embed_dim, kernel_size=3, stride=1, padding=1), nn.InstanceNorm2d(512), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1,1)) # [256,8,8]->[512,1,1] ) self.decoder_blocks = nn.ModuleList([ CrossAttentionBlock(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer) for i in range(decoder_depth)]) self.decoder_norm = norm_layer(decoder_embed_dim) # Density map regresssion module self.decode_head0 = nn.Sequential( nn.Conv2d(decoder_embed_dim, 256, kernel_size=3, stride=1, padding=1), nn.GroupNorm(8, 256), nn.ReLU(inplace=True) ) self.decode_head1 = nn.Sequential( nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), nn.GroupNorm(8, 256), nn.ReLU(inplace=True) ) self.decode_head2 = nn.Sequential( nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), nn.GroupNorm(8, 256), nn.ReLU(inplace=True) ) self.decode_head3 = nn.Sequential( nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), nn.GroupNorm(8, 256), nn.ReLU(inplace=True), nn.Conv2d(256, 1, kernel_size=1, stride=1) ) # -------------------------------------------------------------------------- self.norm_pix_loss = norm_pix_loss self.initialize_weights() def initialize_weights(self): # initialization # initialize (and freeze) pos_embed by sin-cos embedding pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=False) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=False) self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0)) # initialize patch_embed like nn.Linear (instead of nn.Conv2d) w = self.patch_embed.proj.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) torch.nn.init.normal_(self.shot_token, std=.02) # initialize nn.Linear and nn.LayerNorm self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): # we use xavier_uniform following official JAX ViT: torch.nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_encoder(self, x): # embed patches x = self.patch_embed(x) # add pos embed w/o cls token x = x + self.pos_embed # apply Transformer blocks for blk in self.blocks: x = blk(x) x = self.norm(x) return x def forward_decoder(self, x, y_, shot_num=3): # embed tokens x = self.decoder_embed(x) # add pos embed x = x + self.decoder_pos_embed # Exemplar encoder y_ = y_.transpose(0,1) # y_ [N,3,3,64,64]->[3,N,3,64,64] y1=[] C=0 N=0 cnt = 0 for yi in y_: cnt+=1 if cnt > shot_num: break yi = self.decoder_proj1(yi) yi = self.decoder_proj2(yi) yi = self.decoder_proj3(yi) yi = self.decoder_proj4(yi) N, C,_,_ = yi.shape y1.append(yi.squeeze(-1).squeeze(-1)) # yi [N,C,1,1]->[N,C] if shot_num > 0: y = torch.cat(y1,dim=0).reshape(shot_num,N,C).to(x.device) else: y = self.shot_token.repeat(y_.shape[1],1).unsqueeze(0).to(x.device) y = y.transpose(0,1) # y [3,N,C]->[N,3,C] # apply Transformer blocks for blk in self.decoder_blocks: x = blk(x, y) x = self.decoder_norm(x) # Density map regression n, hw, c = x.shape h = w = int(math.sqrt(hw)) x = x.transpose(1, 2).reshape(n, c, h, w) x = F.interpolate( self.decode_head0(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False) x = F.interpolate( self.decode_head1(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False) x = F.interpolate( self.decode_head2(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False) x = F.interpolate( self.decode_head3(x), size=x.shape[-1]*2, mode='bilinear', align_corners=False) x = x.squeeze(-3) return x def forward(self, imgs, boxes, shot_num): # if boxes.nelement() > 0: # torchvision.utils.save_image(boxes[0], f"data/out/crops/box_{time.time()}_{random.randint(0, 99999):>5}.png") with torch.no_grad(): latent = self.forward_encoder(imgs) pred = self.forward_decoder(latent, boxes, shot_num) # [N, 384, 384] return pred def mae_vit_base_patch16_dec512d8b(**kwargs): model = SupervisedMAE( patch_size=16, embed_dim=768, depth=12, num_heads=12, decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def mae_vit_large_patch16_dec512d8b(**kwargs): model = SupervisedMAE( patch_size=16, embed_dim=1024, depth=24, num_heads=16, decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def mae_vit_huge_patch14_dec512d8b(**kwargs): model = SupervisedMAE( patch_size=14, embed_dim=1280, depth=32, num_heads=16, decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def mae_vit_base_patch16_fim4(**kwargs): model = SupervisedMAE( patch_size=16, embed_dim=768, depth=12, num_heads=12, decoder_embed_dim=512, decoder_depth=4, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def mae_vit_base_patch16_fim6(**kwargs): model = SupervisedMAE( patch_size=16, embed_dim=768, depth=12, num_heads=12, decoder_embed_dim=512, decoder_depth=6, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model # set recommended archs mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b mae_vit_base4_patch16 = mae_vit_base_patch16_fim4 # decoder: 4 blocks mae_vit_base6_patch16 = mae_vit_base_patch16_fim6 # decoder: 6 blocks mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b