from argparse import Namespace import json from pathlib import Path import numpy as np import random from torchvision import transforms import torch import cv2 import torchvision.transforms.functional as TF import scipy.ndimage as ndimage from PIL import Image import argparse import imgaug.augmenters as iaa from imgaug.augmentables import Keypoint, KeypointsOnImage MAX_HW = 384 IM_NORM_MEAN = [0.485, 0.456, 0.406] IM_NORM_STD = [0.229, 0.224, 0.225] def get_args_parser(): parser = argparse.ArgumentParser('MAE pre-training', add_help=False) parser.add_argument('--batch_size', default=8, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') parser.add_argument('--epochs', default=200, type=int) parser.add_argument('--accum_iter', default=1, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') # Model parameters parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--mask_ratio', default=0.5, type=float, help='Masking ratio (percentage of removed patches).') parser.add_argument('--norm_pix_loss', action='store_true', help='Use (per-patch) normalized pixels as targets for computing loss') parser.set_defaults(norm_pix_loss=False) # Optimizer parameters parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') parser.add_argument('--blr', type=float, default=1e-3, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') parser.add_argument('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N', help='epochs to warmup LR') # Dataset parameters parser.add_argument('--data_path', default='./data/FSC147/', type=str, help='dataset path') parser.add_argument('--anno_file', default='annotation_FSC147_384.json', type=str, help='annotation json file') parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str, help='data split json file') parser.add_argument('--im_dir', default='images_384_VarV2', type=str, help='images directory') parser.add_argument('--gt_dir', default='./data/FSC147/gt_density_map_adaptive_384_VarV2', type=str, help='ground truth directory') parser.add_argument('--output_dir', default='./data/out/pre_4_dir', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='./weights/mae_pretrain_vit_base_full.pth', # mae_visualize_vit_base help='resume from checkpoint') # Training parameters parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # Distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') # Logging parameters parser.add_argument('--log_dir', default='./logs/pre_4_dir', help='path where to tensorboard log') parser.add_argument("--title", default="CounTR_pretraining", type=str) parser.add_argument("--wandb", default="counting", type=str) parser.add_argument("--team", default="wsense", type=str) parser.add_argument("--wandb_id", default=None, type=str) parser.add_argument("--do_aug", default=True, type=bool) parser.add_argument('--class_file', default='./data/FSC147/ImageClasses_FSC147.txt', type=str, help='class json file') return parser args = get_args_parser() args = args.parse_args() class ResizeSomeImage(object): def __init__(self, args): args = get_args_parser() args = args.parse_args() # print(dir(args.im_dir.as_posix())) self.data_path = Path(args.data_path) self.im_dir = self.data_path/args.im_dir anno_file = self.data_path/args.anno_file data_split_file = self.data_path/args.data_split_file with open(anno_file) as f: self.annotations = json.load(f) with open(data_split_file) as f: data_split = json.load(f) self.train_set = data_split['train'] self.class_dict = {} if args.do_aug: with open(args.class_file) as f: for line in f: key = line.split()[0] val = line.split()[1:] self.class_dict[key] = val class ResizePreTrainImage(ResizeSomeImage): """ Resize the image so that: 1. Image is equal to 384 * 384 2. The new height and new width are divisible by 16 3. The aspect ratio is preserved Density and boxes correctness not preserved(crop and horizontal flip) """ def __init__(self, args, MAX_HW=384): super().__init__(args) self.max_hw = MAX_HW def __call__(self, sample): image, lines_boxes, density = sample['image'], sample['lines_boxes'], sample['gt_density'] W, H = image.size new_H = 16 * int(H / 16) new_W = 16 * int(W / 16) resized_image = transforms.Resize((new_H, new_W))(image) resized_density = cv2.resize(density, (new_W, new_H)) orig_count = np.sum(density) new_count = np.sum(resized_density) if new_count > 0: resized_density = resized_density * (orig_count / new_count) boxes = list() for box in lines_boxes: box2 = [int(k) for k in box] y1, x1, y2, x2 = box2[0], box2[1], box2[2], box2[3] boxes.append([0, y1, x1, y2, x2]) boxes = torch.Tensor(boxes).unsqueeze(0) resized_image = PreTrainNormalize(resized_image) resized_density = torch.from_numpy(resized_density).unsqueeze(0).unsqueeze(0) sample = {'image': resized_image, 'boxes': boxes, 'gt_density': resized_density} return sample class ResizeTrainImage(ResizeSomeImage): """ Resize the image so that: 1. Image is equal to 384 * 384 2. The new height and new width are divisible by 16 3. The aspect ratio is possibly preserved Density map is cropped to have the same size(and position) with the cropped image Exemplar boxes may be outside the cropped area. Augmentation including Gaussian noise, Color jitter, Gaussian blur, Random affine, Random horizontal flip and Mosaic (or Random Crop if no Mosaic) is used. """ def __init__(self, args, MAX_HW=384, do_aug=True): super().__init__(args) self.max_hw = MAX_HW self.do_aug = do_aug def __call__(self, sample): image, lines_boxes, neg_lines_boxes, dots, im_id, m_flag = sample['image'], sample['lines_boxes'], sample['neg_lines_boxes'], \ sample['dots'], sample['id'], sample['m_flag'] W, H = image.size new_H = 16 * int(H / 16) new_W = 16 * int(W / 16) scale_factor_h = float(new_H) / H scale_factor_w = float(new_W) / W resized_image = transforms.Resize((new_H, new_W))(image) resized_image = TTensor(resized_image) resized_density = np.zeros((new_H, new_W), dtype='float32') # Augmentation probability aug_flag = self.do_aug mosaic_flag = random.random() < 0.25 if aug_flag: # Gaussian noise noise = np.random.normal(0, 0.1, resized_image.size()) noise = torch.from_numpy(noise) re_image = resized_image + noise re_image = torch.clamp(re_image, 0, 1) # Color jitter and Gaussian blur re_image = Augmentation(re_image) # Random affine re1_image = re_image.transpose(0, 1).transpose(1, 2).numpy() keypoints = [] for i in range(dots.shape[0]): keypoints.append(Keypoint(x=min(new_W - 1, int(dots[i][0] * scale_factor_w)), y=min(new_H - 1, int(dots[i][1] * scale_factor_h)))) kps = KeypointsOnImage(keypoints, re1_image.shape) seq = iaa.Sequential([ iaa.Affine( rotate=(-15, 15), scale=(0.8, 1.2), shear=(-10, 10), translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)} ) ]) re1_image, kps_aug = seq(image=re1_image, keypoints=kps) # Produce dot annotation map resized_density = np.zeros((resized_density.shape[0], resized_density.shape[1]), dtype='float32') for i in range(len(kps.keypoints)): if (int(kps_aug.keypoints[i].y) <= new_H - 1 and int(kps_aug.keypoints[i].x) <= new_W - 1) and not \ kps_aug.keypoints[i].is_out_of_image(re1_image): resized_density[int(kps_aug.keypoints[i].y)][int(kps_aug.keypoints[i].x)] = 1 resized_density = torch.from_numpy(resized_density) re_image = TTensor(re1_image) # Random horizontal flip flip_p = random.random() if flip_p > 0.5: re_image = TF.hflip(re_image) resized_density = TF.hflip(resized_density) # Random self mosaic if mosaic_flag: image_array = [] map_array = [] blending_l = random.randint(10, 20) resize_l = 192 + 2 * blending_l if dots.shape[0] >= 70: for i in range(4): length = random.randint(150, 384) start_W = random.randint(0, new_W - length) start_H = random.randint(0, new_H - length) reresized_image1 = TF.crop(resized_image, start_H, start_W, length, length) reresized_image1 = transforms.Resize((resize_l, resize_l))(reresized_image1) reresized_density1 = np.zeros((resize_l, resize_l), dtype='float32') for i in range(dots.shape[0]): if start_H <= min(new_H - 1, int(dots[i][1] * scale_factor_h)) < start_H + length and start_W <= min(new_W - 1, int(dots[i][0] * scale_factor_w)) < start_W + length: reresized_density1[min(resize_l-1,int((min(new_H-1,int(dots[i][1] * scale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_W-1,int(dots[i][0] * scale_factor_w))-start_W)*resize_l/length))]=1 reresized_density1 = torch.from_numpy(reresized_density1) image_array.append(reresized_image1) map_array.append(reresized_density1) else: m_flag = 1 prob = random.random() if prob > 0.25: gt_pos = random.randint(0, 3) else: gt_pos = random.randint(0, 4) # 5% 0 objects for i in range(4): if i == gt_pos: Tim_id = im_id r_image = resized_image Tdots = dots new_TH = new_H new_TW = new_W Tscale_factor_w = scale_factor_w Tscale_factor_h = scale_factor_h else: Tim_id = self.train_set[random.randint(0, len(self.train_set) - 1)] Tdots = np.array(self.annotations[Tim_id]['points']) Timage = Image.open('{}/{}'.format(self.im_dir, Tim_id)) Timage.load() new_TW = 16 * int(Timage.size[0] / 16) new_TH = 16 * int(Timage.size[1] / 16) Tscale_factor_w = float(new_TW) / Timage.size[0] Tscale_factor_h = float(new_TH) / Timage.size[1] r_image = TTensor(transforms.Resize((new_TH, new_TW))(Timage)) length = random.randint(250, 384) start_W = random.randint(0, new_TW - length) start_H = random.randint(0, new_TH - length) r_image1 = TF.crop(r_image, start_H, start_W, length, length) r_image1 = transforms.Resize((resize_l, resize_l))(r_image1) r_density1 = np.zeros((resize_l, resize_l), dtype='float32') # try: # class_value = self.class_dict[im_id] # Tim_value = self.class_dict[Tim_id] # except KeyError: # # Handle the case when the key doesn't exist # class_value = None # Or any appropriate default value # Tim_value = None # Or any appropriate default value if self.class_dict[im_id] == self.class_dict[Tim_id]: # if class_value == Tim_value: # if im_id in self.class_dict and Tim_id in self.class_dict: # if im_id in self.class_dict and Tim_id in self.class_dict: # class_value = self.class_dict[im_id] # Tim_value = self.class_dict[Tim_id] # # Proceed with your comparison and processing here # if class_value == Tim_value: for i in range(Tdots.shape[0]): if start_H <= min(new_TH - 1, int(Tdots[i][1] * Tscale_factor_h)) < start_H + length and start_W <= min(new_TW - 1, int(Tdots[i][0] * Tscale_factor_w)) < start_W + length: r_density1[min(resize_l-1,int((min(new_TH-1, int(Tdots[i][1] * Tscale_factor_h))-start_H)*resize_l/length))][min(resize_l-1,int((min(new_TW-1,int(Tdots[i][0] * Tscale_factor_w))-start_W)*resize_l/length))]=1 r_density1 = torch.from_numpy(r_density1) image_array.append(r_image1) map_array.append(r_density1) reresized_image5 = torch.cat((image_array[0][:, blending_l:resize_l-blending_l], image_array[1][:, blending_l: resize_l-blending_l]), 1) reresized_density5 = torch.cat((map_array[0][blending_l:resize_l-blending_l], map_array[1][blending_l: resize_l-blending_l]), 0) for i in range(blending_l): reresized_image5[:, 192+i] = image_array[0][:, resize_l-1-blending_l+i] * (blending_l-i)/(2 * blending_l) + reresized_image5[:, 192+i] * (i+blending_l)/(2*blending_l) reresized_image5[:, 191-i] = image_array[1][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image5[:, 191-i] * (i+blending_l)/(2*blending_l) reresized_image5 = torch.clamp(reresized_image5, 0, 1) reresized_image6 = torch.cat((image_array[2][:, blending_l:resize_l-blending_l], image_array[3][:, blending_l: resize_l-blending_l]), 1) reresized_density6 = torch.cat((map_array[2][blending_l:resize_l-blending_l], map_array[3][blending_l:resize_l-blending_l]), 0) for i in range(blending_l): reresized_image6[:, 192+i] = image_array[2][:, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 192+i] * (i+blending_l)/(2*blending_l) reresized_image6[:, 191-i] = image_array[3][:, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image6[:, 191-i] * (i+blending_l)/(2*blending_l) reresized_image6 = torch.clamp(reresized_image6, 0, 1) reresized_image = torch.cat((reresized_image5[:, :, blending_l:resize_l-blending_l], reresized_image6[:, :, blending_l:resize_l-blending_l]), 2) reresized_density = torch.cat((reresized_density5[:, blending_l:resize_l-blending_l], reresized_density6[:, blending_l:resize_l-blending_l]), 1) for i in range(blending_l): reresized_image[:, :, 192+i] = reresized_image5[:, :, resize_l-1-blending_l+i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 192+i] * (i+blending_l)/(2*blending_l) reresized_image[:, :, 191-i] = reresized_image6[:, :, blending_l-i] * (blending_l-i)/(2*blending_l) + reresized_image[:, :, 191-i] * (i+blending_l)/(2*blending_l) reresized_image = torch.clamp(reresized_image, 0, 1) else: # Random 384*384 crop in a new_W*384 image and 384*new_W density map start = random.randint(0, new_W - 1 - 383) reresized_image = TF.crop(re_image, 0, start, 384, 384) reresized_density = resized_density[:, start:start + 384] else: # Random 384*384 crop in a new_W*384 image and 384*new_W density map for i in range(dots.shape[0]): resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \ [min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1 resized_density = torch.from_numpy(resized_density) start = random.randint(0, new_W - self.max_hw) reresized_image = TF.crop(resized_image, 0, start, self.max_hw, self.max_hw) reresized_density = resized_density[0:self.max_hw, start:start + self.max_hw] # Gaussian distribution density map reresized_density = ndimage.gaussian_filter(reresized_density.numpy(), sigma=(1, 1), order=0) # Density map scale up reresized_density = reresized_density * 60 reresized_density = torch.from_numpy(reresized_density) # Crop bboxes and resize as 64x64 boxes = list() rects = list() cnt = 0 for box in lines_boxes: cnt += 1 if cnt > 3: break box2 = [int(k) for k in box] y1 = int(box2[0] * scale_factor_h) x1 = int(box2[1] * scale_factor_w) y2 = int(box2[2] * scale_factor_h) x2 = int(box2[3] * scale_factor_w) # print(y1,x1,y2,x2) if not aug_flag: rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)])) bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1] bbox = transforms.Resize((64, 64))(bbox) boxes.append(bbox) boxes = torch.stack(boxes) neg_boxes = list() neg_rects = list() cnt = 0 for box in neg_lines_boxes: cnt += 1 if cnt > 3: break box2 = [int(k) for k in box] y1 = int(box2[0] * scale_factor_h) x1 = int(box2[1] * scale_factor_w) y2 = int(box2[2] * scale_factor_h) x2 = int(box2[3] * scale_factor_w) # print(y1,x1,y2,x2) if not aug_flag: neg_rects.append(torch.tensor([y1, max(0, x1-start), y2, min(self.max_hw, x2-start)])) neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1] neg_bbox = transforms.Resize((64, 64))(neg_bbox) neg_boxes.append(neg_bbox) neg_boxes = torch.stack(neg_boxes) # if len(boxes) > 0: # boxes = torch.stack(boxes) # 如果 boxes 非空,则正常执行 torch.stack # boxes1 = boxes # else: # boxes = boxes1 # pass # # 如果 boxes 为空,您可以选择跳过这个样本,或者提供一个默认的边界框 # # 例如,使用一个表示图像全区域的默认边界框 # default_box = torch.tensor([[0, 0],[0, 0],0, 0]) # 一个示例的默认边界框,具体值取决于您的应用 # boxes = default_box.unsqueeze(0) # 增加一个维度以符合 torch.stack 的要求 # # pass if aug_flag: pos = torch.tensor([]) else: pos = torch.stack(rects) # boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384] sample = {'image': reresized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': reresized_density, 'm_flag': m_flag} return sample class ResizeValImage(ResizeSomeImage): def __init__(self, args, MAX_HW=384): super().__init__(args) self.max_hw = MAX_HW def __call__(self, sample): image, dots, m_flag, lines_boxes, neg_lines_boxes = sample['image'], sample['dots'], sample['m_flag'], sample['lines_boxes'], sample['neg_lines_boxes'] W, H = image.size new_H = new_W = self.max_hw scale_factor_h = float(new_H) / H scale_factor_w = float(new_W) / W resized_image = transforms.Resize((new_H, new_W))(image) resized_image = TTensor(resized_image) # Resize density map resized_density = np.zeros((new_H, new_W), dtype='float32') for i in range(dots.shape[0]): resized_density[min(new_H - 1, int(dots[i][1] * scale_factor_h))] \ [min(new_W - 1, int(dots[i][0] * scale_factor_w))] = 1 # resized_density = ndimage.gaussian_filter(resized_density, sigma=4, radius=7, order=0) resized_density = ndimage.gaussian_filter(resized_density, sigma=4, order=0) resized_density = torch.from_numpy(resized_density) * 60 # Crop bboxes and resize as 64x64 boxes = list() rects = list() cnt = 0 for box in lines_boxes: cnt += 1 if cnt > 3: break box2 = [int(k) for k in box] y1 = int(box2[0] * scale_factor_h) x1 = int(box2[1] * scale_factor_w) y2 = int(box2[2] * scale_factor_h) x2 = int(box2[3] * scale_factor_w) rects.append(torch.tensor([y1, x1, y2, x2])) bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1] bbox = transforms.Resize((64, 64))(bbox) boxes.append(bbox) boxes = torch.stack(boxes) pos = torch.stack(rects) neg_boxes = list() neg_rects = list() cnt = 0 for box in neg_lines_boxes: cnt += 1 if cnt > 3: break box2 = [int(k) for k in box] y1 = int(box2[0] * scale_factor_h) x1 = int(box2[1] * scale_factor_w) y2 = int(box2[2] * scale_factor_h) x2 = int(box2[3] * scale_factor_w) neg_rects.append(torch.tensor([y1, x1, y2, x2])) neg_bbox = resized_image[:, y1:y2 + 1, x1:x2 + 1] neg_bbox = transforms.Resize((64, 64))(neg_bbox) neg_boxes.append(neg_bbox) neg_boxes = torch.stack(neg_boxes) # boxes shape [3,3,64,64], image shape [3,384,384], density shape[384,384] sample = {'image': resized_image, 'boxes': boxes, 'neg_boxes': neg_boxes, 'pos': pos, 'gt_density': resized_density, 'm_flag': m_flag} return sample PreTrainNormalize = transforms.Compose([ transforms.RandomResizedCrop(MAX_HW, scale=(0.2, 1.0), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), # transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD) ]) TTensor = transforms.Compose([ transforms.ToTensor(), ]) Augmentation = transforms.Compose([ transforms.ColorJitter(brightness=0.25, contrast=0.15, saturation=0.15, hue=0.15), transforms.GaussianBlur(kernel_size=(7, 9)) ]) Normalize = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=IM_NORM_MEAN, std=IM_NORM_STD) ]) def transform_train(args: Namespace, do_aug=True): return transforms.Compose([ResizeTrainImage(args, MAX_HW, do_aug)]) def transform_val(args: Namespace): return transforms.Compose([ResizeValImage(args, MAX_HW)]) def transform_pre_train(args: Namespace): return transforms.Compose([ResizePreTrainImage(args, MAX_HW)])