# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- import builtins import datetime import os import time import json from collections import defaultdict, deque from pathlib import Path # from typing import Union import pandas as pd import torch import torch.distributed as dist import wandb # from torch._six import inf from torch import inf import matplotlib.pyplot as plt from torchvision import transforms import cv2 from tqdm import tqdm from typing import Union, List class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): if self.count == 0: # Return a default value or handle the zero count scenario return 0 # Or any other default value or handling mechanism else: return self.total / self.count # return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ builtin_print = builtins.print def print(*args, **kwargs): force = kwargs.pop('force', False) force = force or (get_world_size() > 8) if is_master or force: now = datetime.datetime.now().time() builtin_print('[{}] '.format(now), end='') # print with time stamp builtin_print(*args, **kwargs) builtins.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if args.dist_on_itp: args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') setup_for_distributed(is_master=True) # hack args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, suffix="", upload=True): if suffix: suffix = f"__{suffix}" output_dir = Path(args.output_dir) ckpt_name = f"checkpoint{suffix}.pth" if loss_scaler is not None: checkpoint_paths = [output_dir / ckpt_name] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, } save_on_master(to_save, checkpoint_path) if upload and is_main_process(): log_wandb_model(f"checkpoint{suffix}", checkpoint_path, epoch) print("checkpoint sent to W&B (if)") else: client_state = {'epoch': epoch} model.save_checkpoint(save_dir=args.output_dir, tag=ckpt_name, client_state=client_state) if upload and is_main_process(): log_wandb_model(f"checkpoint{suffix}", output_dir / ckpt_name, epoch) print("checkpoint sent to W&B (else)") def log_wandb_model(title, path, epoch): artifact = wandb.Artifact(title, type="model") artifact.add_file(path) artifact.metadata["epoch"] = epoch wandb.log_artifact(artifact_or_path=artifact, name=title) def load_model(args, model_without_ddp, optimizer, loss_scaler): if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape: print(f"Removing key pos_embed from pretrained checkpoint") del checkpoint['model']['pos_embed'] if 'decoder_pos_embed' in checkpoint['model'] and checkpoint['model']['decoder_pos_embed'].shape != model_without_ddp.state_dict()['decoder_pos_embed'].shape: print(f"Removing key decoder_pos_embed from pretrained checkpoint") del checkpoint['model']['decoder_pos_embed'] model_without_ddp.load_state_dict(checkpoint['model'], strict=False) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): optimizer.load_state_dict(checkpoint['optimizer']) args.start_epoch = checkpoint['epoch'] + 1 if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") def load_model_FSC(args, model_without_ddp): if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape: print(f"Removing key pos_embed from pretrained checkpoint") del checkpoint['model']['pos_embed'] model_without_ddp.load_state_dict(checkpoint['model'], strict=False) print(f"Resume checkpoint {args.resume} ({checkpoint['epoch']})") def load_model_FSC1(args, model_without_ddp): if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') #model = timm.create_model('vit_base_patch16_224', pretrained=True) #torch.save(model.state_dict(), './output_abnopre_dir/checkpoint-6657.pth') checkpoint1 = torch.load('./output_abnopre_dir/checkpoint-6657.pth', map_location='cpu') if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != model_without_ddp.state_dict()['pos_embed'].shape: print(f"Removing key pos_embed from pretrained checkpoint") del checkpoint['model']['pos_embed'] del checkpoint1['cls_token'],checkpoint1['pos_embed'] model_without_ddp.load_state_dict(checkpoint['model'], strict=False) model_without_ddp.load_state_dict(checkpoint1, strict=False) print("Resume checkpoint %s" % args.resume) def load_model_FSC_full(args, model_without_ddp, optimizer, loss_scaler): if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') if 'pos_embed' in checkpoint['model'] and checkpoint['model']['pos_embed'].shape != \ model_without_ddp.state_dict()['pos_embed'].shape: print(f"Removing key pos_embed from pretrained checkpoint") del checkpoint['model']['pos_embed'] model_without_ddp.load_state_dict(checkpoint['model'], strict=False) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint and args.do_resume: optimizer.load_state_dict(checkpoint['optimizer']) args.start_epoch = checkpoint['epoch'] + 1 if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & scheduler!") def all_reduce_mean(x): world_size = get_world_size() if world_size > 1: x_reduce = torch.tensor(x).cuda() dist.all_reduce(x_reduce) x_reduce /= world_size return x_reduce.item() else: return x def plot_counts(res_csv: Union[str, List[str]], output_dir: str, suffix: str = "", smooth: bool = False): if suffix: suffix = f"_{suffix}" if smooth: suffix = f"_smooth{suffix}" if type(res_csv) == str: res_csv = [res_csv] plt.figure(figsize=(15, 5)) for res in res_csv: name = Path(res).parent.name df = pd.read_csv(res) print(df) df.sort_values(by="name", inplace=True) df.reset_index(drop=True, inplace=True) df.index += 1 print(df) if smooth: time_arr = df.index[5:-5] smooth_pred_mean = df['prediction'].iloc[5:-5].rolling(25).mean() smooth_pred_std = df['prediction'].iloc[5:-5].rolling(25).std() plt.plot(time_arr, smooth_pred_mean, label=name) plt.fill_between(time_arr, smooth_pred_mean + smooth_pred_std, smooth_pred_mean - smooth_pred_std, alpha=.2) plt.xlabel('Frame') plt.ylabel('Count') else: plt.plot(df.index, df['prediction'], label=name) plt.legend() plt.savefig(os.path.join(output_dir, f'counts{suffix}.png'), dpi=300) def write_zeroshot_annotations(p: Path): with open(p / 'annotations.json', 'a') as split: split.write('{\n') for img in p.iterdir(): if img.is_file(): split.write(f' "{img.name}": {{\n' \ ' "H": 960,\n' \ ' "W": 1280,\n' \ ' "box_examples_coordinates": [],\n' \ ' "points": []\n' \ ' },\n') split.write("}") with open(p / 'split.json', 'a') as split: split.write('{\n "test":\n [\n') for img in p.iterdir(): if img.is_file(): split.write(f' "{img.name}",\n') split.write(" ]\n}") def make_grid(imgs, h, w): assert len(imgs) == 9 rows = [] for i in range(0, 9, 3): row = torch.cat((imgs[i], imgs[i + 1], imgs[i + 2]), -1) rows += [row] grid = torch.cat((rows[0], rows[1], rows[2]), 0) grid = transforms.Resize((h, w))(grid.unsqueeze(0)) return grid.squeeze(0) def min_max(t): t_shape = t.shape t = t.view(t_shape[0], -1) t -= t.min(1, keepdim=True)[0] t /= t.max(1, keepdim=True)[0] t = t.view(*t_shape) return t def min_max_np(v, new_min=0, new_max=1): v_min, v_max = v.min(), v.max() return (v - v_min) / (v_max - v_min) * (new_max - new_min) + new_min def get_box_map(sample, pos, device, external=False): box_map = torch.zeros([sample.shape[1], sample.shape[2]], device=device) if external is False: for rect in pos: for i in range(rect[2] - rect[0]): box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[1], sample.shape[2] - 1)] = 10 box_map[min(rect[0] + i, sample.shape[1] - 1), min(rect[3], sample.shape[2] - 1)] = 10 for i in range(rect[3] - rect[1]): box_map[min(rect[0], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10 box_map[min(rect[2], sample.shape[1] - 1), min(rect[1] + i, sample.shape[2] - 1)] = 10 box_map = box_map.unsqueeze(0).repeat(3, 1, 1) return box_map timerfunc = time.perf_counter class measure_time(object): def __enter__(self): self.start = timerfunc() return self def __exit__(self, typ, value, traceback): self.duration = timerfunc() - self.start def __add__(self, other): return self.duration + other.duration def __sub__(self, other): return self.duration - other.duration def __str__(self): return str(self.duration) def log_test_results(test_dir): test_dir = Path(test_dir) logs = [] for d in test_dir.iterdir(): if d.is_dir() and (d / "log.txt").exists(): print(d.name) with open(d / "log.txt") as f: last = f.readlines()[-1] j = json.loads(last) j['name'] = d.name logs.append(j) df = pd.DataFrame(logs) df.sort_values('name', inplace=True, ignore_index=True) cols = list(df.columns) cols = cols[-1:] + cols[:-1] df = df[cols] df.to_csv(test_dir / "logs.csv", index=False) COLORS = { 'muted blue': '#1f77b4', 'safety orange': '#ff7f0e', 'cooked asparagus green': '#2ca02c', 'brick red': '#d62728', 'muted purple': '#9467bd', 'chestnut brown': '#8c564b', 'raspberry yogurt pink': '#e377c2', 'middle gray': '#7f7f7f', 'curry yellow-green': '#bcbd22', 'blue-teal': '#17becf', 'muted blue light': '#419ede', 'safety orange light': '#ffa85b', 'cooked asparagus green light': '#4bce4b', 'brick red light': '#e36667' } def plot_test_results(test_dir): import plotly.graph_objects as go test_dir = Path(test_dir) df = pd.read_csv(test_dir / "logs.csv") df.sort_values('name', inplace=True) fig = go.Figure() fig.add_trace(go.Scatter(x=df['name'], y=df['MAE'], line_color=COLORS['muted blue'], mode='lines', name='MAE')) fig.add_trace(go.Scatter(x=df['name'], y=df['RMSE'], line_color=COLORS['safety orange'], mode='lines', name='RMSE')) fig.add_trace(go.Scatter(x=df['name'], y=df['NAE'], line_color=COLORS['cooked asparagus green'], mode='lines', name='NAE')) fig.update_yaxes(type="log") fig.write_image(test_dir / "plot.jpeg", scale=4) fig.write_html(test_dir / "plot.html", auto_open=False) def frames2vid(input_dir: str, output_file: str, pattern: str, fps: int, h=720, w=1280): input_dir = Path(input_dir) video_file = None files = sorted(input_dir.glob(pattern)) video_file = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) for img in tqdm(files, total=len(files)): frame = cv2.imread(str(img)) frame = cv2.resize(frame, (w, h)) video_file.write(frame) video_file.release()