--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit library_name: peft tags: - lora - bitcoin - quantitative-analysis - trading - financial-analysis - text-generation license: mit language: - en pipeline_tag: text-generation --- # Milo Bitcoin GPT-OSS-20B LoRA v1 **A professional Bitcoin quantitative analysis model fine-tuned on GPT-OSS-20B** This is a LoRA (Low-Rank Adaptation) adapter for [unsloth/gpt-oss-20b-unsloth-bnb-4bit](https://huggingface.co/unsloth/gpt-oss-20b-unsloth-bnb-4bit), specifically fine-tuned for professional Bitcoin market analysis and trading signal generation. ## Model Description Milo Bitcoin is an AI-powered quantitative analyst that provides: - **Professional Trading Analysis**: Multi-factor technical analysis with precise signals - **Structured Decision Output**: JSON-formatted BUY/SELL/HOLD recommendations - **Quantitative Intelligence**: Technical indicators, trend analysis, momentum signals - **Risk Assessment**: Stop-loss, take-profit, and confidence scores ### Key Features - 🎯 Specialized in Bitcoin market analysis - 📊 Structured JSON output format - 🔢 Multi-task: price forecasting + classification + risk assessment - 📈 Professional trading-ready signals - ⚡ Consistent methodology trained on 7,341 samples ## Training Details ### Training Data - **Training Samples**: 6,239 professional Bitcoin analysis examples - **Validation Samples**: 734 samples - **Test Samples**: 368 samples - **Total Samples**: 7,341 samples - **Data Quality**: 99%+ validated professional samples - **Data Mix**: 90% Bitcoin analysis + 7% math reasoning + 3% logic reasoning ### Training Configuration - **Base Model**: GPT-OSS-20B (21B parameters, 3.6B active) - **Method**: LoRA (Low-Rank Adaptation) - **LoRA Rank**: 64 - **LoRA Alpha**: 128 - **Target Modules**: q_proj, k_proj, v_proj, o_proj - **Training Epochs**: 3 - **Batch Size**: 4 (effective batch size: 32 with gradient accumulation) - **Learning Rate**: 2e-4 - **Training Time**: 1.65 hours on RTX 5090 (32GB VRAM) ### Training Results - **Final Training Loss**: 1.2539 - **Final Validation Loss**: 1.2931 - **Training Speed**: 3.145 samples/second - **Model Size**: 122MB LoRA weights (vs base model ~20GB, 99.4% compression) - **Convergence**: Stable loss reduction with no overfitting ## Usage ### Installation ```bash pip install transformers peft torch unsloth ``` ### Load Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model base_model = AutoModelForCausalLM.from_pretrained( "unsloth/gpt-oss-20b-unsloth-bnb-4bit", device_map="auto", trust_remote_code=True ) # Load LoRA adapter model = PeftModel.from_pretrained( base_model, "HugMilo/milo-bitcoin-gpt-oss-20b-lora-v1" ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( "HugMilo/milo-bitcoin-gpt-oss-20b-lora-v1" ) ``` ### Generate Analysis ```python # Prepare prompt prompt = """Analyze the current Bitcoin market conditions with the following data: - Current Price: $109,453 - 24h Change: -5.35% - RSI(14): 31.2 - Volume: $22.63B Provide professional trading analysis with structured output.""" # Generate response inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, do_sample=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Expected Output Format ```json { "action": "HOLD", "confidence": 72, "current_price": 109453.00, "stop_loss": 105200.00, "take_profit": 116800.00, "forecast_10d": [109800, 111200, 112500, 114100, 115600, 116200, 115800, 116800, 118200, 117900], "analysis": "BTC consolidating around $109k level after -5.35% weekly decline. RSI oversold at 31, testing key support. Market cap dominance 56.5% suggests institutional confidence remains.", "risk_score": 0.31, "technical_indicators": { "rsi_14": 31.2, "sma_20": 112500, "volume_24h": "22.63B USD" } } ``` ## Intended Use ### Primary Users - Quantitative traders seeking AI-powered analysis signals - Crypto fund managers requiring structured analysis frameworks - Professional investors for data-driven portfolio management - FinTech developers building Bitcoin analysis APIs ### Use Cases - Systematic trading signal generation - Risk management and position sizing - Research and backtesting - API integration for trading systems ## Limitations and Disclaimers ⚠️ **For Professional Traders Only** - Model predictions are based on historical data patterns (training data from Bitcoin market history) - Past performance does not guarantee future results - This is a tool for professional analysis, not financial advice - Users are responsible for their own trading decisions and risk management - Always combine with your own analysis and risk management framework - Regulatory compliance is the user's responsibility ## Performance Metrics - **Training Efficiency**: 7x faster than expected (1.65h vs 12-15h projected) - **JSON Format Consistency**: 100% structured output during training - **Inference Speed**: <2 seconds per analysis on RTX 5090 - **Memory Requirements**: ~8-12GB VRAM for inference (4-bit quantization) ## Technical Specifications - **Framework**: Transformers 4.56.2, PEFT 0.17.1, TRL 0.23.0 - **PyTorch**: 2.8.0+cu128 - **Hardware Used**: NVIDIA RTX 5090 (32GB VRAM) - **Quantization**: 4-bit via bitsandbytes - **Gradient Checkpointing**: Unsloth optimized ## Model Card Authors **Norton Gu** | University of Rochester '25 - GitHub: [@futurespyhi](https://github.com/futurespyhi) - LinkedIn: [Norton Gu](https://www.linkedin.com/in/norton-gu-322737278/) - Project: [Milo_Bitcoin](https://github.com/futurespyhi/MiloBitcoin) ## Citation If you use this model in your research or applications, please cite: ```bibtex @misc{gu2025milobitcoin, author = {Norton Gu}, title = {Milo Bitcoin: AI-Powered Bitcoin Quantitative Analysis Assistant}, year = {2025}, publisher = {HuggingFace}, howpublished = {\url{https://huggingface.co/HugMilo/milo-bitcoin-gpt-oss-20b-lora-v1}}, } ``` ## License MIT License - Free for educational and commercial use ## Acknowledgments - Base model: [unsloth/gpt-oss-20b-unsloth-bnb-4bit](https://huggingface.co/unsloth/gpt-oss-20b-unsloth-bnb-4bit) - Training framework: [Unsloth](https://github.com/unslothai/unsloth) - Fine-tuning: [TRL](https://github.com/huggingface/trl) and [PEFT](https://github.com/huggingface/peft) --- *Building the future of AI-powered crypto analysis, one meow at a time* 🐾₿