Initial commit
Browse files- .gitattributes +1 -0
- README.md +71 -0
- args.yml +75 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- ppo-seals-HalfCheetah-v0.zip +3 -0
- ppo-seals-HalfCheetah-v0/_stable_baselines3_version +1 -0
- ppo-seals-HalfCheetah-v0/data +118 -0
- ppo-seals-HalfCheetah-v0/policy.optimizer.pth +3 -0
- ppo-seals-HalfCheetah-v0/policy.pth +3 -0
- ppo-seals-HalfCheetah-v0/pytorch_variables.pth +3 -0
- ppo-seals-HalfCheetah-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
|
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- seals/HalfCheetah-v0
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- metrics:
|
| 12 |
+
- type: mean_reward
|
| 13 |
+
value: 3261.29 +/- 1422.26
|
| 14 |
+
name: mean_reward
|
| 15 |
+
task:
|
| 16 |
+
type: reinforcement-learning
|
| 17 |
+
name: reinforcement-learning
|
| 18 |
+
dataset:
|
| 19 |
+
name: seals/HalfCheetah-v0
|
| 20 |
+
type: seals/HalfCheetah-v0
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# **PPO** Agent playing **seals/HalfCheetah-v0**
|
| 24 |
+
This is a trained model of a **PPO** agent playing **seals/HalfCheetah-v0**
|
| 25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
| 26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
| 27 |
+
|
| 28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
| 29 |
+
reinforcement learning agents,
|
| 30 |
+
with hyperparameter optimization and pre-trained agents included.
|
| 31 |
+
|
| 32 |
+
## Usage (with SB3 RL Zoo)
|
| 33 |
+
|
| 34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
| 35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
| 36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
| 37 |
+
|
| 38 |
+
```
|
| 39 |
+
# Download model and save it into the logs/ folder
|
| 40 |
+
python -m utils.load_from_hub --algo ppo --env seals/HalfCheetah-v0 -orga HumanCompatibleAI -f logs/
|
| 41 |
+
python enjoy.py --algo ppo --env seals/HalfCheetah-v0 -f logs/
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
## Training (with the RL Zoo)
|
| 45 |
+
```
|
| 46 |
+
python train.py --algo ppo --env seals/HalfCheetah-v0 -f logs/
|
| 47 |
+
# Upload the model and generate video (when possible)
|
| 48 |
+
python -m utils.push_to_hub --algo ppo --env seals/HalfCheetah-v0 -f logs/ -orga HumanCompatibleAI
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## Hyperparameters
|
| 52 |
+
```python
|
| 53 |
+
OrderedDict([('batch_size', 64),
|
| 54 |
+
('clip_range', 0.1),
|
| 55 |
+
('ent_coef', 3.794797423594763e-06),
|
| 56 |
+
('gae_lambda', 0.95),
|
| 57 |
+
('gamma', 0.95),
|
| 58 |
+
('learning_rate', 0.0003286871805949382),
|
| 59 |
+
('max_grad_norm', 0.8),
|
| 60 |
+
('n_envs', 1),
|
| 61 |
+
('n_epochs', 5),
|
| 62 |
+
('n_steps', 512),
|
| 63 |
+
('n_timesteps', 1000000.0),
|
| 64 |
+
('normalize', True),
|
| 65 |
+
('policy', 'MlpPolicy'),
|
| 66 |
+
('policy_kwargs',
|
| 67 |
+
'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, '
|
| 68 |
+
'64])])'),
|
| 69 |
+
('vf_coef', 0.11483689492120866),
|
| 70 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
| 71 |
+
```
|
args.yml
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!!python/object/apply:collections.OrderedDict
|
| 2 |
+
- - - algo
|
| 3 |
+
- ppo
|
| 4 |
+
- - device
|
| 5 |
+
- cpu
|
| 6 |
+
- - env
|
| 7 |
+
- seals/HalfCheetah-v0
|
| 8 |
+
- - env_kwargs
|
| 9 |
+
- null
|
| 10 |
+
- - eval_episodes
|
| 11 |
+
- 5
|
| 12 |
+
- - eval_freq
|
| 13 |
+
- 25000
|
| 14 |
+
- - gym_packages
|
| 15 |
+
- []
|
| 16 |
+
- - hyperparams
|
| 17 |
+
- null
|
| 18 |
+
- - log_folder
|
| 19 |
+
- seals_experts
|
| 20 |
+
- - log_interval
|
| 21 |
+
- -1
|
| 22 |
+
- - n_eval_envs
|
| 23 |
+
- 1
|
| 24 |
+
- - n_evaluations
|
| 25 |
+
- null
|
| 26 |
+
- - n_jobs
|
| 27 |
+
- 1
|
| 28 |
+
- - n_startup_trials
|
| 29 |
+
- 10
|
| 30 |
+
- - n_timesteps
|
| 31 |
+
- -1
|
| 32 |
+
- - n_trials
|
| 33 |
+
- 500
|
| 34 |
+
- - no_optim_plots
|
| 35 |
+
- false
|
| 36 |
+
- - num_threads
|
| 37 |
+
- 4
|
| 38 |
+
- - optimization_log_path
|
| 39 |
+
- null
|
| 40 |
+
- - optimize_hyperparameters
|
| 41 |
+
- false
|
| 42 |
+
- - pruner
|
| 43 |
+
- median
|
| 44 |
+
- - sampler
|
| 45 |
+
- tpe
|
| 46 |
+
- - save_freq
|
| 47 |
+
- -1
|
| 48 |
+
- - save_replay_buffer
|
| 49 |
+
- false
|
| 50 |
+
- - seed
|
| 51 |
+
- 1108849555
|
| 52 |
+
- - storage
|
| 53 |
+
- null
|
| 54 |
+
- - study_name
|
| 55 |
+
- null
|
| 56 |
+
- - tensorboard_log
|
| 57 |
+
- ''
|
| 58 |
+
- - total_n_trials
|
| 59 |
+
- null
|
| 60 |
+
- - track
|
| 61 |
+
- false
|
| 62 |
+
- - trained_agent
|
| 63 |
+
- ''
|
| 64 |
+
- - truncate_last_trajectory
|
| 65 |
+
- true
|
| 66 |
+
- - uuid
|
| 67 |
+
- false
|
| 68 |
+
- - vec_env
|
| 69 |
+
- dummy
|
| 70 |
+
- - verbose
|
| 71 |
+
- 1
|
| 72 |
+
- - wandb_entity
|
| 73 |
+
- null
|
| 74 |
+
- - wandb_project_name
|
| 75 |
+
- sb3
|
config.yml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!!python/object/apply:collections.OrderedDict
|
| 2 |
+
- - - batch_size
|
| 3 |
+
- 64
|
| 4 |
+
- - clip_range
|
| 5 |
+
- 0.1
|
| 6 |
+
- - ent_coef
|
| 7 |
+
- 3.794797423594763e-06
|
| 8 |
+
- - gae_lambda
|
| 9 |
+
- 0.95
|
| 10 |
+
- - gamma
|
| 11 |
+
- 0.95
|
| 12 |
+
- - learning_rate
|
| 13 |
+
- 0.0003286871805949382
|
| 14 |
+
- - max_grad_norm
|
| 15 |
+
- 0.8
|
| 16 |
+
- - n_envs
|
| 17 |
+
- 1
|
| 18 |
+
- - n_epochs
|
| 19 |
+
- 5
|
| 20 |
+
- - n_steps
|
| 21 |
+
- 512
|
| 22 |
+
- - n_timesteps
|
| 23 |
+
- 1000000.0
|
| 24 |
+
- - normalize
|
| 25 |
+
- true
|
| 26 |
+
- - policy
|
| 27 |
+
- MlpPolicy
|
| 28 |
+
- - policy_kwargs
|
| 29 |
+
- dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
|
| 30 |
+
- - vf_coef
|
| 31 |
+
- 0.11483689492120866
|
env_kwargs.yml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
ppo-seals-HalfCheetah-v0.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:433f91bb7be2a00a31048f20ac2949a6023c3c7364ca4eb4c47f5116562fee81
|
| 3 |
+
size 167172
|
ppo-seals-HalfCheetah-v0/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.6.0
|
ppo-seals-HalfCheetah-v0/data
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4150f1790>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4150f1820>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4150f18b0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4150f1940>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff4150f19d0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff4150f1a60>",
|
| 13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4150f1af0>",
|
| 14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff4150f1b80>",
|
| 15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4150f1c10>",
|
| 16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4150f1ca0>",
|
| 17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4150f1d30>",
|
| 18 |
+
"__abstractmethods__": "frozenset()",
|
| 19 |
+
"_abc_impl": "<_abc_data object at 0x7ff4150e7cc0>"
|
| 20 |
+
},
|
| 21 |
+
"verbose": 1,
|
| 22 |
+
"policy_kwargs": {
|
| 23 |
+
":type:": "<class 'dict'>",
|
| 24 |
+
":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
|
| 25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
| 26 |
+
"net_arch": [
|
| 27 |
+
{
|
| 28 |
+
"pi": [
|
| 29 |
+
64,
|
| 30 |
+
64
|
| 31 |
+
],
|
| 32 |
+
"vf": [
|
| 33 |
+
64,
|
| 34 |
+
64
|
| 35 |
+
]
|
| 36 |
+
}
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
"observation_space": {
|
| 40 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 41 |
+
":serialized:": "gAWVkwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWkAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApLEoWUjAFDlHSUUpSMBGhpZ2iUaBIolpAAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgKSxKFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsShZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
| 42 |
+
"dtype": "float64",
|
| 43 |
+
"_shape": [
|
| 44 |
+
18
|
| 45 |
+
],
|
| 46 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf]",
|
| 47 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
| 48 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False]",
|
| 49 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False]",
|
| 50 |
+
"_np_random": null
|
| 51 |
+
},
|
| 52 |
+
"action_space": {
|
| 53 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 54 |
+
":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
| 55 |
+
"dtype": "float32",
|
| 56 |
+
"_shape": [
|
| 57 |
+
6
|
| 58 |
+
],
|
| 59 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
| 60 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
| 61 |
+
"bounded_below": "[ True True True True True True]",
|
| 62 |
+
"bounded_above": "[ True True True True True True]",
|
| 63 |
+
"_np_random": "RandomState(MT19937)"
|
| 64 |
+
},
|
| 65 |
+
"n_envs": 1,
|
| 66 |
+
"num_timesteps": 1000448,
|
| 67 |
+
"_total_timesteps": 1000000,
|
| 68 |
+
"_num_timesteps_at_start": 0,
|
| 69 |
+
"seed": 0,
|
| 70 |
+
"action_noise": null,
|
| 71 |
+
"start_time": 1651240813.0879583,
|
| 72 |
+
"learning_rate": {
|
| 73 |
+
":type:": "<class 'function'>",
|
| 74 |
+
":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9uYXMvdWNiL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzWKdLD3DSmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 75 |
+
},
|
| 76 |
+
"tensorboard_log": null,
|
| 77 |
+
"lr_schedule": {
|
| 78 |
+
":type:": "<class 'function'>",
|
| 79 |
+
":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9uYXMvdWNiL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzWKdLD3DSmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 80 |
+
},
|
| 81 |
+
"_last_obs": null,
|
| 82 |
+
"_last_episode_starts": {
|
| 83 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 84 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
| 85 |
+
},
|
| 86 |
+
"_last_original_obs": {
|
| 87 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 88 |
+
":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAFxRPqim+bM/GnFGMueGsT8w+1l3TQekP/i+ZWAXG7G/mGPXWgn1oD9A0x+2tNZiPy94yixtC7m/WEuXdkAWgz8wWwrUjMZ1v38FPOCUVHC/vSnBQDJ5oD9iVsW5ymSyv5juU3M0Tb4/CtpirvEowb9/Vrlc7LypvzRFtOVbvqU/l/SUwT4BwL8vgby5/mm8P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
|
| 89 |
+
},
|
| 90 |
+
"_episode_num": 0,
|
| 91 |
+
"use_sde": false,
|
| 92 |
+
"sde_sample_freq": -1,
|
| 93 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
| 94 |
+
"ep_info_buffer": {
|
| 95 |
+
":type:": "<class 'collections.deque'>",
|
| 96 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQtDRqr7ArkCUhpRSlIwBbJRN6AOMAXSUR0CHDSdyT6i1dX2UKGgGaAloD0MIzO80mZGMmkCUhpRSlGgVTegDaBZHQIcS479ycTd1fZQoaAZoCWgPQwgsYthhzBqbQJSGlFKUaBVN6ANoFkdAhxik87p3YHV9lChoBmgJaA9DCMbdIFpLjZhAlIaUUpRoFU3oA2gWR0CHHmBoVVPvdX2UKGgGaAloD0MINiOD3BWClUCUhpRSlGgVTegDaBZHQIckJufmLcd1fZQoaAZoCWgPQwgiUWhZp7igQJSGlFKUaBVN6ANoFkdAhynfD+BH1HV9lChoBmgJaA9DCAiu8gQC55pAlIaUUpRoFU3oA2gWR0CHL5or4FibdX2UKGgGaAloD0MIG2ZoPBlRoECUhpRSlGgVTegDaBZHQIc1Vyq+8Gt1fZQoaAZoCWgPQwjC2hg7IbOSQJSGlFKUaBVN6ANoFkdAhzsfag261HV9lChoBmgJaA9DCHh+UYKuDZ1AlIaUUpRoFU3oA2gWR0CHQNWQOnVHdX2UKGgGaAloD0MI0NbBwYb9pECUhpRSlGgVTegDaBZHQIdGkk6cRUZ1fZQoaAZoCWgPQwgtQUZABf6iQJSGlFKUaBVN6ANoFkdAh0xFpoK2KHV9lChoBmgJaA9DCATmIVN++IVAlIaUUpRoFU3oA2gWR0CHUhLs8gZCdX2UKGgGaAloD0MIeCXJcw0+pUCUhpRSlGgVTegDaBZHQIdXx9oexOd1fZQoaAZoCWgPQwipTZzcr6R9QJSGlFKUaBVN6ANoFkdAh12PczqKQHV9lChoBmgJaA9DCAn9TL0+6KNAlIaUUpRoFU3oA2gWR0CHY0MkQf6odX2UKGgGaAloD0MI6V+SyiQ0nECUhpRSlGgVTegDaBZHQIdpCExqO951fZQoaAZoCWgPQwgmqOFbaPuZQJSGlFKUaBVN6ANoFkdAh24ZRKpT/HV9lChoBmgJaA9DCEdy+Q+RhaxAlIaUUpRoFU3oA2gWR0CHc8qH446wdX2UKGgGaAloD0MIH2rbMCpumkCUhpRSlGgVTegDaBZHQId5f7m+0w91fZQoaAZoCWgPQwgmxccn5DBkQJSGlFKUaBVN6ANoFkdAh39IvalDW3V9lChoBmgJaA9DCIRkAROYeIxAlIaUUpRoFU3oA2gWR0CHhQ+6Ae7udX2UKGgGaAloD0MIvoOfOMCCoUCUhpRSlGgVTegDaBZHQIeKxVhkRSR1fZQoaAZoCWgPQwiS7BFqZliFQJSGlFKUaBVN6ANoFkdAh5CLpiZv1nV9lChoBmgJaA9DCExSmWKOsZtAlIaUUpRoFU3oA2gWR0CHlkLXtjTbdX2UKGgGaAloD0MIEcR5ONn2pUCUhpRSlGgVTegDaBZHQIeuEmICU5d1fZQoaAZoCWgPQwh4JjRJdFahQJSGlFKUaBVN6ANoFkdAh7PJGFzuGHV9lChoBmgJaA9DCFzK+WIPNp9AlIaUUpRoFU3oA2gWR0CHuX5u63AmdX2UKGgGaAloD0MIy2Wjc66VqECUhpRSlGgVTegDaBZHQIe/P0f5k9V1fZQoaAZoCWgPQwh56pEG93GeQJSGlFKUaBVN6ANoFkdAh8T0/GEPD3V9lChoBmgJaA9DCNxnlZniWpdAlIaUUpRoFU3oA2gWR0CHyrzgdfb9dX2UKGgGaAloD0MIwk8cQC+hnkCUhpRSlGgVTegDaBZHQIfQcp/gBLh1fZQoaAZoCWgPQwiNCwdC0qqtQJSGlFKUaBVN6ANoFkdAh9Yk2gnMMnV9lChoBmgJaA9DCFYqqKiKcZhAlIaUUpRoFU3oA2gWR0CH29+G47RwdX2UKGgGaAloD0MI7YDriqnnlkCUhpRSlGgVTegDaBZHQIfhpRdhRZV1fZQoaAZoCWgPQwibxvZaQPauQJSGlFKUaBVN6ANoFkdAh+dYCp3otHV9lChoBmgJaA9DCP/MID5I0qBAlIaUUpRoFU3oA2gWR0CH7Q4Ajps5dX2UKGgGaAloD0MIOj/FcdAylkCUhpRSlGgVTegDaBZHQIfzDQokRjB1fZQoaAZoCWgPQwhEp+fdGButQJSGlFKUaBVN6ANoFkdAh/g2jGkvb3V9lChoBmgJaA9DCIHptG47l6FAlIaUUpRoFU3oA2gWR0CH/iGM4tHydX2UKGgGaAloD0MIaJWZ0npHlUCUhpRSlGgVTegDaBZHQIgEP/rB0p51fZQoaAZoCWgPQwjiIYyftqeaQJSGlFKUaBVN6ANoFkdAiAouez2OAHV9lChoBmgJaA9DCN2adFuiAJpAlIaUUpRoFU3oA2gWR0CIEFrGBFuvdX2UKGgGaAloD0MIqHLaUzr4o0CUhpRSlGgVTegDaBZHQIgWe6K+BYp1fZQoaAZoCWgPQwhaRuo9hRulQJSGlFKUaBVN6ANoFkdAiBy1Zs9B8nV9lChoBmgJaA9DCEV/aObpkK9AlIaUUpRoFU3oA2gWR0CIIqySFGoadX2UKGgGaAloD0MIcHuCxHb8nECUhpRSlGgVTegDaBZHQIgomU2UB4l1fZQoaAZoCWgPQwjgha3Z+uStQJSGlFKUaBVN6ANoFkdAiC6CbUgB93V9lChoBmgJaA9DCO53KAoU5KJAlIaUUpRoFU3oA2gWR0CINIMyad+YdX2UKGgGaAloD0MIXvbrTmeLmECUhpRSlGgVTegDaBZHQIg6XPRiPQx1fZQoaAZoCWgPQwi2Dg72biapQJSGlFKUaBVN6ANoFkdAiFK28IzFdnV9lChoBmgJaA9DCM4cklpYz61AlIaUUpRoFU3oA2gWR0CIWJjUd7v5dX2UKGgGaAloD0MIvB+3X95YmkCUhpRSlGgVTegDaBZHQIhelcUuctp1fZQoaAZoCWgPQwiV8loJzZmfQJSGlFKUaBVN6ANoFkdAiGSMAvL5h3V9lChoBmgJaA9DCHxCdt5maq5AlIaUUpRoFU3oA2gWR0CIaoXO4XoDdX2UKGgGaAloD0MIXmbYKDs7pkCUhpRSlGgVTegDaBZHQIhwbhtLteF1fZQoaAZoCWgPQwgdylAVw7qXQJSGlFKUaBVN6ANoFkdAiHY9NnGsFXV9lChoBmgJaA9DCBN9PsqQKqBAlIaUUpRoFU3oA2gWR0CIfCkLQXyidX2UKGgGaAloD0MIUHCxok4MrUCUhpRSlGgVTegDaBZHQIiB+1fE4vN1fZQoaAZoCWgPQwgVrHE2DUitQJSGlFKUaBVN6ANoFkdAiIei5NGmUHV9lChoBmgJaA9DCOxph78mXK9AlIaUUpRoFU3oA2gWR0CIjbQ1rIo3dX2UKGgGaAloD0MIVwbVBj+5oECUhpRSlGgVTegDaBZHQIiT169kBjp1fZQoaAZoCWgPQwhfKcsQB6CrQJSGlFKUaBVN6ANoFkdAiJm5K3/gi3V9lChoBmgJaA9DCBH8byVrEKJAlIaUUpRoFU3oA2gWR0CIn79qk/KRdX2UKGgGaAloD0MIk8fT8rMZnECUhpRSlGgVTegDaBZHQIilnbEgntx1fZQoaAZoCWgPQwhNZVHYNTevQJSGlFKUaBVN6ANoFkdAiKt9YGMXJ3V9lChoBmgJaA9DCFCJ6xjH36dAlIaUUpRoFU3oA2gWR0CIsVjwx33YdX2UKGgGaAloD0MI8+LEV2v8rkCUhpRSlGgVTegDaBZHQIi3N2FFlTZ1fZQoaAZoCWgPQwgAGxAh/lCeQJSGlFKUaBVN6ANoFkdAiL0T/p+tsHV9lChoBmgJaA9DCNVbA1uFeKZAlIaUUpRoFU3oA2gWR0CIwu7f51vEdX2UKGgGaAloD0MIZcVwdcDvr0CUhpRSlGgVTegDaBZHQIjIpCngpBp1fZQoaAZoCWgPQwh3gv3XSZqaQJSGlFKUaBVN6ANoFkdAiM5YvFm4AnV9lChoBmgJaA9DCA8om3K9/K9AlIaUUpRoFU3oA2gWR0CI1Kz0HyEtdX2UKGgGaAloD0MICJChY0e/n0CUhpRSlGgVTegDaBZHQIjabQeFL391fZQoaAZoCWgPQwiQEOULGoawQJSGlFKUaBVN6ANoFkdAiOA8iGFi8XV9lChoBmgJaA9DCA02dR6Nha5AlIaUUpRoFU3oA2gWR0CI+Fjc2zfKdX2UKGgGaAloD0MI1lWBWvBTsECUhpRSlGgVTegDaBZHQIj+F47ihnJ1fZQoaAZoCWgPQwifqkID0eeWQJSGlFKUaBVN6ANoFkdAiQPgnlXA/XV9lChoBmgJaA9DCJT1m4llVLBAlIaUUpRoFU3oA2gWR0CJCZdTHbRGdX2UKGgGaAloD0MIWdqpudy+e0CUhpRSlGgVTegDaBZHQIkPYxagVXV1fZQoaAZoCWgPQwh0IywqkkijQJSGlFKUaBVN6ANoFkdAiRUdmHxjKHV9lChoBmgJaA9DCPRPcLE6m6pAlIaUUpRoFU3oA2gWR0CJGk4iHIp6dX2UKGgGaAloD0MIPbmmQNZel0CUhpRSlGgVTegDaBZHQIkgCZx7zCl1fZQoaAZoCWgPQwhens4Vle6wQJSGlFKUaBVN6ANoFkdAiSXGZNO/L3V9lChoBmgJaA9DCDl9PV9T6JRAlIaUUpRoFU3oA2gWR0CJK4DOkcjrdX2UKGgGaAloD0MIVFbT9XTKrUCUhpRSlGgVTegDaBZHQIkxOoBJZnt1fZQoaAZoCWgPQwjhCb3+pPSeQJSGlFKUaBVN6ANoFkdAiTcGLDQ7cXV9lChoBmgJaA9DCGqjOh10AbFAlIaUUpRoFU3oA2gWR0CJPL3hXKbKdX2UKGgGaAloD0MI/bypSMF5sUCUhpRSlGgVTegDaBZHQIlCdLJ0W/J1fZQoaAZoCWgPQwhw6gPJG6mpQJSGlFKUaBVN6ANoFkdAiUg6F/QSjHV9lChoBmgJaA9DCEonEkwlS5tAlIaUUpRoFU3oA2gWR0CJTfcZ9/jLdX2UKGgGaAloD0MIQbgCCjX+l0CUhpRSlGgVTegDaBZHQIlTsh7mdRR1fZQoaAZoCWgPQwjvVMA9j+ClQJSGlFKUaBVN6ANoFkdAiVltWU8mr3V9lChoBmgJaA9DCEgxQKKhFrJAlIaUUpRoFU3oA2gWR0CJXy9IPK+0dX2UKGgGaAloD0MIUkgyq3e+lECUhpRSlGgVTegDaBZHQIlk6sfaHsV1fZQoaAZoCWgPQwiNJ4I4v1KUQJSGlFKUaBVN6ANoFkdAiWqlVDKHPHV9lChoBmgJaA9DCD/FceC1VqRAlIaUUpRoFU3oA2gWR0CJcGfgaWHDdX2UKGgGaAloD0MIXwoPmj0Dn0CUhpRSlGgVTegDaBZHQIl2He3x4IN1fZQoaAZoCWgPQwgSFaqb+9CYQJSGlFKUaBVN6ANoFkdAiXvXuVopQXV9lChoBmgJaA9DCMkfDDxnMJhAlIaUUpRoFU3oA2gWR0CJgZIS13MZdWUu"
|
| 97 |
+
},
|
| 98 |
+
"ep_success_buffer": {
|
| 99 |
+
":type:": "<class 'collections.deque'>",
|
| 100 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 101 |
+
},
|
| 102 |
+
"_n_updates": 9770,
|
| 103 |
+
"n_steps": 512,
|
| 104 |
+
"gamma": 0.95,
|
| 105 |
+
"gae_lambda": 0.95,
|
| 106 |
+
"ent_coef": 3.794797423594763e-06,
|
| 107 |
+
"vf_coef": 0.11483689492120866,
|
| 108 |
+
"max_grad_norm": 0.8,
|
| 109 |
+
"batch_size": 64,
|
| 110 |
+
"n_epochs": 5,
|
| 111 |
+
"clip_range": {
|
| 112 |
+
":type:": "<class 'function'>",
|
| 113 |
+
":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9uYXMvdWNiL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 114 |
+
},
|
| 115 |
+
"clip_range_vf": null,
|
| 116 |
+
"normalize_advantage": true,
|
| 117 |
+
"target_kl": null
|
| 118 |
+
}
|
ppo-seals-HalfCheetah-v0/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:216ef768c6181017697845cfcd4722be613a038954216ba9ab59e74bf7d1ed79
|
| 3 |
+
size 96407
|
ppo-seals-HalfCheetah-v0/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2e02e95990c73426a231e1980bd6de5280296a3de5feedb7cf9d69479b4a176
|
| 3 |
+
size 49022
|
ppo-seals-HalfCheetah-v0/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-seals-HalfCheetah-v0/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
|
| 2 |
+
Python: 3.8.10
|
| 3 |
+
Stable-Baselines3: 1.6.0
|
| 4 |
+
PyTorch: 1.11.0+cu102
|
| 5 |
+
GPU Enabled: False
|
| 6 |
+
Numpy: 1.22.3
|
| 7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1dbc7af649926d57235dba20cdcb2c56ed00b51e5e0c99279aeac992f11ded1
|
| 3 |
+
size 1370679
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 3261.2944118, "std_reward": 1422.255660091738, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-25T15:38:26.459351"}
|
train_eval_metrics.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4cc2930a677ba6350c933562b57dbb29409f6824ecd9a7d3ffd84ba8acac1985
|
| 3 |
+
size 33047
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1ce771bb312b6b86fcbed1d94f935917b9b8cf818394385cb46315abe5c894b
|
| 3 |
+
size 4770
|