ernestum commited on
Commit
446c19b
·
1 Parent(s): 6828b17

Initial commit

Browse files
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/HalfCheetah-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 3261.29 +/- 1422.26
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: seals/HalfCheetah-v0
20
+ type: seals/HalfCheetah-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **seals/HalfCheetah-v0**
24
+ This is a trained model of a **PPO** agent playing **seals/HalfCheetah-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env seals/HalfCheetah-v0 -orga HumanCompatibleAI -f logs/
41
+ python enjoy.py --algo ppo --env seals/HalfCheetah-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env seals/HalfCheetah-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env seals/HalfCheetah-v0 -f logs/ -orga HumanCompatibleAI
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 64),
54
+ ('clip_range', 0.1),
55
+ ('ent_coef', 3.794797423594763e-06),
56
+ ('gae_lambda', 0.95),
57
+ ('gamma', 0.95),
58
+ ('learning_rate', 0.0003286871805949382),
59
+ ('max_grad_norm', 0.8),
60
+ ('n_envs', 1),
61
+ ('n_epochs', 5),
62
+ ('n_steps', 512),
63
+ ('n_timesteps', 1000000.0),
64
+ ('normalize', True),
65
+ ('policy', 'MlpPolicy'),
66
+ ('policy_kwargs',
67
+ 'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, '
68
+ '64])])'),
69
+ ('vf_coef', 0.11483689492120866),
70
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
71
+ ```
args.yml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - device
5
+ - cpu
6
+ - - env
7
+ - seals/HalfCheetah-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - seals_experts
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - 4
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 1108849555
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - total_n_trials
59
+ - null
60
+ - - track
61
+ - false
62
+ - - trained_agent
63
+ - ''
64
+ - - truncate_last_trajectory
65
+ - true
66
+ - - uuid
67
+ - false
68
+ - - vec_env
69
+ - dummy
70
+ - - verbose
71
+ - 1
72
+ - - wandb_entity
73
+ - null
74
+ - - wandb_project_name
75
+ - sb3
config.yml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - clip_range
5
+ - 0.1
6
+ - - ent_coef
7
+ - 3.794797423594763e-06
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.95
12
+ - - learning_rate
13
+ - 0.0003286871805949382
14
+ - - max_grad_norm
15
+ - 0.8
16
+ - - n_envs
17
+ - 1
18
+ - - n_epochs
19
+ - 5
20
+ - - n_steps
21
+ - 512
22
+ - - n_timesteps
23
+ - 1000000.0
24
+ - - normalize
25
+ - true
26
+ - - policy
27
+ - MlpPolicy
28
+ - - policy_kwargs
29
+ - dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
30
+ - - vf_coef
31
+ - 0.11483689492120866
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-seals-HalfCheetah-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:433f91bb7be2a00a31048f20ac2949a6023c3c7364ca4eb4c47f5116562fee81
3
+ size 167172
ppo-seals-HalfCheetah-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-seals-HalfCheetah-v0/data ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4150f1790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4150f1820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4150f18b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4150f1940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff4150f19d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff4150f1a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4150f1af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff4150f1b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4150f1c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4150f1ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4150f1d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff4150e7cc0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
+ "net_arch": [
27
+ {
28
+ "pi": [
29
+ 64,
30
+ 64
31
+ ],
32
+ "vf": [
33
+ 64,
34
+ 64
35
+ ]
36
+ }
37
+ ]
38
+ },
39
+ "observation_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWVkwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWkAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApLEoWUjAFDlHSUUpSMBGhpZ2iUaBIolpAAAAAAAAAAAAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgKSxKFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsShZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
42
+ "dtype": "float64",
43
+ "_shape": [
44
+ 18
45
+ ],
46
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf]",
47
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
48
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False]",
49
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False]",
50
+ "_np_random": null
51
+ },
52
+ "action_space": {
53
+ ":type:": "<class 'gym.spaces.box.Box'>",
54
+ ":serialized:": "gAWVEwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
55
+ "dtype": "float32",
56
+ "_shape": [
57
+ 6
58
+ ],
59
+ "low": "[-1. -1. -1. -1. -1. -1.]",
60
+ "high": "[1. 1. 1. 1. 1. 1.]",
61
+ "bounded_below": "[ True True True True True True]",
62
+ "bounded_above": "[ True True True True True True]",
63
+ "_np_random": "RandomState(MT19937)"
64
+ },
65
+ "n_envs": 1,
66
+ "num_timesteps": 1000448,
67
+ "_total_timesteps": 1000000,
68
+ "_num_timesteps_at_start": 0,
69
+ "seed": 0,
70
+ "action_noise": null,
71
+ "start_time": 1651240813.0879583,
72
+ "learning_rate": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9uYXMvdWNiL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzWKdLD3DSmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
75
+ },
76
+ "tensorboard_log": null,
77
+ "lr_schedule": {
78
+ ":type:": "<class 'function'>",
79
+ ":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9uYXMvdWNiL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzWKdLD3DSmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
80
+ },
81
+ "_last_obs": null,
82
+ "_last_episode_starts": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
85
+ },
86
+ "_last_original_obs": {
87
+ ":type:": "<class 'numpy.ndarray'>",
88
+ ":serialized:": "gAWVBQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaQAAAAAAAAAFxRPqim+bM/GnFGMueGsT8w+1l3TQekP/i+ZWAXG7G/mGPXWgn1oD9A0x+2tNZiPy94yixtC7m/WEuXdkAWgz8wWwrUjMZ1v38FPOCUVHC/vSnBQDJ5oD9iVsW5ymSyv5juU3M0Tb4/CtpirvEowb9/Vrlc7LypvzRFtOVbvqU/l/SUwT4BwL8vgby5/mm8P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsShpSMAUOUdJRSlC4="
89
+ },
90
+ "_episode_num": 0,
91
+ "use_sde": false,
92
+ "sde_sample_freq": -1,
93
+ "_current_progress_remaining": -0.00044800000000000395,
94
+ "ep_info_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQtDRqr7ArkCUhpRSlIwBbJRN6AOMAXSUR0CHDSdyT6i1dX2UKGgGaAloD0MIzO80mZGMmkCUhpRSlGgVTegDaBZHQIcS479ycTd1fZQoaAZoCWgPQwgsYthhzBqbQJSGlFKUaBVN6ANoFkdAhxik87p3YHV9lChoBmgJaA9DCMbdIFpLjZhAlIaUUpRoFU3oA2gWR0CHHmBoVVPvdX2UKGgGaAloD0MINiOD3BWClUCUhpRSlGgVTegDaBZHQIckJufmLcd1fZQoaAZoCWgPQwgiUWhZp7igQJSGlFKUaBVN6ANoFkdAhynfD+BH1HV9lChoBmgJaA9DCAiu8gQC55pAlIaUUpRoFU3oA2gWR0CHL5or4FibdX2UKGgGaAloD0MIG2ZoPBlRoECUhpRSlGgVTegDaBZHQIc1Vyq+8Gt1fZQoaAZoCWgPQwjC2hg7IbOSQJSGlFKUaBVN6ANoFkdAhzsfag261HV9lChoBmgJaA9DCHh+UYKuDZ1AlIaUUpRoFU3oA2gWR0CHQNWQOnVHdX2UKGgGaAloD0MI0NbBwYb9pECUhpRSlGgVTegDaBZHQIdGkk6cRUZ1fZQoaAZoCWgPQwgtQUZABf6iQJSGlFKUaBVN6ANoFkdAh0xFpoK2KHV9lChoBmgJaA9DCATmIVN++IVAlIaUUpRoFU3oA2gWR0CHUhLs8gZCdX2UKGgGaAloD0MIeCXJcw0+pUCUhpRSlGgVTegDaBZHQIdXx9oexOd1fZQoaAZoCWgPQwipTZzcr6R9QJSGlFKUaBVN6ANoFkdAh12PczqKQHV9lChoBmgJaA9DCAn9TL0+6KNAlIaUUpRoFU3oA2gWR0CHY0MkQf6odX2UKGgGaAloD0MI6V+SyiQ0nECUhpRSlGgVTegDaBZHQIdpCExqO951fZQoaAZoCWgPQwgmqOFbaPuZQJSGlFKUaBVN6ANoFkdAh24ZRKpT/HV9lChoBmgJaA9DCEdy+Q+RhaxAlIaUUpRoFU3oA2gWR0CHc8qH446wdX2UKGgGaAloD0MIH2rbMCpumkCUhpRSlGgVTegDaBZHQId5f7m+0w91fZQoaAZoCWgPQwgmxccn5DBkQJSGlFKUaBVN6ANoFkdAh39IvalDW3V9lChoBmgJaA9DCIRkAROYeIxAlIaUUpRoFU3oA2gWR0CHhQ+6Ae7udX2UKGgGaAloD0MIvoOfOMCCoUCUhpRSlGgVTegDaBZHQIeKxVhkRSR1fZQoaAZoCWgPQwiS7BFqZliFQJSGlFKUaBVN6ANoFkdAh5CLpiZv1nV9lChoBmgJaA9DCExSmWKOsZtAlIaUUpRoFU3oA2gWR0CHlkLXtjTbdX2UKGgGaAloD0MIEcR5ONn2pUCUhpRSlGgVTegDaBZHQIeuEmICU5d1fZQoaAZoCWgPQwh4JjRJdFahQJSGlFKUaBVN6ANoFkdAh7PJGFzuGHV9lChoBmgJaA9DCFzK+WIPNp9AlIaUUpRoFU3oA2gWR0CHuX5u63AmdX2UKGgGaAloD0MIy2Wjc66VqECUhpRSlGgVTegDaBZHQIe/P0f5k9V1fZQoaAZoCWgPQwh56pEG93GeQJSGlFKUaBVN6ANoFkdAh8T0/GEPD3V9lChoBmgJaA9DCNxnlZniWpdAlIaUUpRoFU3oA2gWR0CHyrzgdfb9dX2UKGgGaAloD0MIwk8cQC+hnkCUhpRSlGgVTegDaBZHQIfQcp/gBLh1fZQoaAZoCWgPQwiNCwdC0qqtQJSGlFKUaBVN6ANoFkdAh9Yk2gnMMnV9lChoBmgJaA9DCFYqqKiKcZhAlIaUUpRoFU3oA2gWR0CH29+G47RwdX2UKGgGaAloD0MI7YDriqnnlkCUhpRSlGgVTegDaBZHQIfhpRdhRZV1fZQoaAZoCWgPQwibxvZaQPauQJSGlFKUaBVN6ANoFkdAh+dYCp3otHV9lChoBmgJaA9DCP/MID5I0qBAlIaUUpRoFU3oA2gWR0CH7Q4Ajps5dX2UKGgGaAloD0MIOj/FcdAylkCUhpRSlGgVTegDaBZHQIfzDQokRjB1fZQoaAZoCWgPQwhEp+fdGButQJSGlFKUaBVN6ANoFkdAh/g2jGkvb3V9lChoBmgJaA9DCIHptG47l6FAlIaUUpRoFU3oA2gWR0CH/iGM4tHydX2UKGgGaAloD0MIaJWZ0npHlUCUhpRSlGgVTegDaBZHQIgEP/rB0p51fZQoaAZoCWgPQwjiIYyftqeaQJSGlFKUaBVN6ANoFkdAiAouez2OAHV9lChoBmgJaA9DCN2adFuiAJpAlIaUUpRoFU3oA2gWR0CIEFrGBFuvdX2UKGgGaAloD0MIqHLaUzr4o0CUhpRSlGgVTegDaBZHQIgWe6K+BYp1fZQoaAZoCWgPQwhaRuo9hRulQJSGlFKUaBVN6ANoFkdAiBy1Zs9B8nV9lChoBmgJaA9DCEV/aObpkK9AlIaUUpRoFU3oA2gWR0CIIqySFGoadX2UKGgGaAloD0MIcHuCxHb8nECUhpRSlGgVTegDaBZHQIgomU2UB4l1fZQoaAZoCWgPQwjgha3Z+uStQJSGlFKUaBVN6ANoFkdAiC6CbUgB93V9lChoBmgJaA9DCO53KAoU5KJAlIaUUpRoFU3oA2gWR0CINIMyad+YdX2UKGgGaAloD0MIXvbrTmeLmECUhpRSlGgVTegDaBZHQIg6XPRiPQx1fZQoaAZoCWgPQwi2Dg72biapQJSGlFKUaBVN6ANoFkdAiFK28IzFdnV9lChoBmgJaA9DCM4cklpYz61AlIaUUpRoFU3oA2gWR0CIWJjUd7v5dX2UKGgGaAloD0MIvB+3X95YmkCUhpRSlGgVTegDaBZHQIhelcUuctp1fZQoaAZoCWgPQwiV8loJzZmfQJSGlFKUaBVN6ANoFkdAiGSMAvL5h3V9lChoBmgJaA9DCHxCdt5maq5AlIaUUpRoFU3oA2gWR0CIaoXO4XoDdX2UKGgGaAloD0MIXmbYKDs7pkCUhpRSlGgVTegDaBZHQIhwbhtLteF1fZQoaAZoCWgPQwgdylAVw7qXQJSGlFKUaBVN6ANoFkdAiHY9NnGsFXV9lChoBmgJaA9DCBN9PsqQKqBAlIaUUpRoFU3oA2gWR0CIfCkLQXyidX2UKGgGaAloD0MIUHCxok4MrUCUhpRSlGgVTegDaBZHQIiB+1fE4vN1fZQoaAZoCWgPQwgVrHE2DUitQJSGlFKUaBVN6ANoFkdAiIei5NGmUHV9lChoBmgJaA9DCOxph78mXK9AlIaUUpRoFU3oA2gWR0CIjbQ1rIo3dX2UKGgGaAloD0MIVwbVBj+5oECUhpRSlGgVTegDaBZHQIiT169kBjp1fZQoaAZoCWgPQwhfKcsQB6CrQJSGlFKUaBVN6ANoFkdAiJm5K3/gi3V9lChoBmgJaA9DCBH8byVrEKJAlIaUUpRoFU3oA2gWR0CIn79qk/KRdX2UKGgGaAloD0MIk8fT8rMZnECUhpRSlGgVTegDaBZHQIilnbEgntx1fZQoaAZoCWgPQwhNZVHYNTevQJSGlFKUaBVN6ANoFkdAiKt9YGMXJ3V9lChoBmgJaA9DCFCJ6xjH36dAlIaUUpRoFU3oA2gWR0CIsVjwx33YdX2UKGgGaAloD0MI8+LEV2v8rkCUhpRSlGgVTegDaBZHQIi3N2FFlTZ1fZQoaAZoCWgPQwgAGxAh/lCeQJSGlFKUaBVN6ANoFkdAiL0T/p+tsHV9lChoBmgJaA9DCNVbA1uFeKZAlIaUUpRoFU3oA2gWR0CIwu7f51vEdX2UKGgGaAloD0MIZcVwdcDvr0CUhpRSlGgVTegDaBZHQIjIpCngpBp1fZQoaAZoCWgPQwh3gv3XSZqaQJSGlFKUaBVN6ANoFkdAiM5YvFm4AnV9lChoBmgJaA9DCA8om3K9/K9AlIaUUpRoFU3oA2gWR0CI1Kz0HyEtdX2UKGgGaAloD0MICJChY0e/n0CUhpRSlGgVTegDaBZHQIjabQeFL391fZQoaAZoCWgPQwiQEOULGoawQJSGlFKUaBVN6ANoFkdAiOA8iGFi8XV9lChoBmgJaA9DCA02dR6Nha5AlIaUUpRoFU3oA2gWR0CI+Fjc2zfKdX2UKGgGaAloD0MI1lWBWvBTsECUhpRSlGgVTegDaBZHQIj+F47ihnJ1fZQoaAZoCWgPQwifqkID0eeWQJSGlFKUaBVN6ANoFkdAiQPgnlXA/XV9lChoBmgJaA9DCJT1m4llVLBAlIaUUpRoFU3oA2gWR0CJCZdTHbRGdX2UKGgGaAloD0MIWdqpudy+e0CUhpRSlGgVTegDaBZHQIkPYxagVXV1fZQoaAZoCWgPQwh0IywqkkijQJSGlFKUaBVN6ANoFkdAiRUdmHxjKHV9lChoBmgJaA9DCPRPcLE6m6pAlIaUUpRoFU3oA2gWR0CJGk4iHIp6dX2UKGgGaAloD0MIPbmmQNZel0CUhpRSlGgVTegDaBZHQIkgCZx7zCl1fZQoaAZoCWgPQwhens4Vle6wQJSGlFKUaBVN6ANoFkdAiSXGZNO/L3V9lChoBmgJaA9DCDl9PV9T6JRAlIaUUpRoFU3oA2gWR0CJK4DOkcjrdX2UKGgGaAloD0MIVFbT9XTKrUCUhpRSlGgVTegDaBZHQIkxOoBJZnt1fZQoaAZoCWgPQwjhCb3+pPSeQJSGlFKUaBVN6ANoFkdAiTcGLDQ7cXV9lChoBmgJaA9DCGqjOh10AbFAlIaUUpRoFU3oA2gWR0CJPL3hXKbKdX2UKGgGaAloD0MI/bypSMF5sUCUhpRSlGgVTegDaBZHQIlCdLJ0W/J1fZQoaAZoCWgPQwhw6gPJG6mpQJSGlFKUaBVN6ANoFkdAiUg6F/QSjHV9lChoBmgJaA9DCEonEkwlS5tAlIaUUpRoFU3oA2gWR0CJTfcZ9/jLdX2UKGgGaAloD0MIQbgCCjX+l0CUhpRSlGgVTegDaBZHQIlTsh7mdRR1fZQoaAZoCWgPQwjvVMA9j+ClQJSGlFKUaBVN6ANoFkdAiVltWU8mr3V9lChoBmgJaA9DCEgxQKKhFrJAlIaUUpRoFU3oA2gWR0CJXy9IPK+0dX2UKGgGaAloD0MIUkgyq3e+lECUhpRSlGgVTegDaBZHQIlk6sfaHsV1fZQoaAZoCWgPQwiNJ4I4v1KUQJSGlFKUaBVN6ANoFkdAiWqlVDKHPHV9lChoBmgJaA9DCD/FceC1VqRAlIaUUpRoFU3oA2gWR0CJcGfgaWHDdX2UKGgGaAloD0MIXwoPmj0Dn0CUhpRSlGgVTegDaBZHQIl2He3x4IN1fZQoaAZoCWgPQwgSFaqb+9CYQJSGlFKUaBVN6ANoFkdAiXvXuVopQXV9lChoBmgJaA9DCMkfDDxnMJhAlIaUUpRoFU3oA2gWR0CJgZIS13MZdWUu"
97
+ },
98
+ "ep_success_buffer": {
99
+ ":type:": "<class 'collections.deque'>",
100
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
101
+ },
102
+ "_n_updates": 9770,
103
+ "n_steps": 512,
104
+ "gamma": 0.95,
105
+ "gae_lambda": 0.95,
106
+ "ent_coef": 3.794797423594763e-06,
107
+ "vf_coef": 0.11483689492120866,
108
+ "max_grad_norm": 0.8,
109
+ "batch_size": 64,
110
+ "n_epochs": 5,
111
+ "clip_range": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVmgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9uYXMvdWNiL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
+ },
115
+ "clip_range_vf": null,
116
+ "normalize_advantage": true,
117
+ "target_kl": null
118
+ }
ppo-seals-HalfCheetah-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:216ef768c6181017697845cfcd4722be613a038954216ba9ab59e74bf7d1ed79
3
+ size 96407
ppo-seals-HalfCheetah-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2e02e95990c73426a231e1980bd6de5280296a3de5feedb7cf9d69479b4a176
3
+ size 49022
ppo-seals-HalfCheetah-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-HalfCheetah-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1dbc7af649926d57235dba20cdcb2c56ed00b51e5e0c99279aeac992f11ded1
3
+ size 1370679
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3261.2944118, "std_reward": 1422.255660091738, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-25T15:38:26.459351"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cc2930a677ba6350c933562b57dbb29409f6824ecd9a7d3ffd84ba8acac1985
3
+ size 33047
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1ce771bb312b6b86fcbed1d94f935917b9b8cf818394385cb46315abe5c894b
3
+ size 4770