""" IAMVC-HEART API Server REST API for the Hybrid Emotional Adaptive Real-Time System. Endpoints: - POST /predict - Make predictions with consciousness metrics - POST /helpers - Use specific cognitive helpers - GET /health - Health check - GET /stats - System statistics Author: Ariel (IAMVC) Date: December 2, 2025 """ import os import sys import json import time import numpy as np from pathlib import Path from typing import Dict, List, Any, Optional from datetime import datetime # Add parent to path sys.path.insert(0, str(Path(__file__).parent.parent)) from flask import Flask, request, jsonify from flask_cors import CORS import joblib # Import our models from src.iamvc_heart_hybrid import IAMVCHeart, HEARTConfig app = Flask(__name__) CORS(app) # Global model instances heart_model: Optional[IAMVCHeart] = None helpers: Dict[str, Any] = {} # Paths MODEL_DIR = Path(__file__).parent.parent / "models" HELPER_DIR = MODEL_DIR / "helpers" def load_models(): """Load all models on startup.""" global heart_model, helpers print("[IAMVC-HEART API] Loading models...") # Load HEART model heart_path = MODEL_DIR / "iamvc_heart_emotional.joblib" if heart_path.exists(): heart_model = IAMVCHeart.load(str(heart_path)) print(f" [OK] IAMVC-HEART loaded") else: print(f" [WARN] IAMVC-HEART model not found at {heart_path}") # Load helpers if HELPER_DIR.exists(): for helper_file in HELPER_DIR.glob("helper_*.joblib"): domain = helper_file.stem.replace("helper_", "") helpers[domain] = joblib.load(helper_file) print(f" [OK] Helper: {domain}") print(f"[IAMVC-HEART API] Loaded {len(helpers)} helpers") @app.route('/health', methods=['GET']) def health(): """Health check endpoint.""" return jsonify({ 'status': 'healthy', 'version': '1.0.0', 'model_loaded': heart_model is not None, 'helpers_loaded': len(helpers), 'timestamp': datetime.now().isoformat(), }) @app.route('/stats', methods=['GET']) def stats(): """Get system statistics.""" stats_data = { 'version': '1.0.0', 'heart_model': heart_model.get_stats() if heart_model else None, 'helpers': list(helpers.keys()), 'n_helpers': len(helpers), 'timestamp': datetime.now().isoformat(), } if heart_model: stats_data['energy_efficiency'] = heart_model.get_energy_efficiency() return jsonify(stats_data) @app.route('/predict', methods=['POST']) def predict(): """ Make predictions with IAMVC-HEART. Request body: { "features": [[1.0, 2.0, ...], ...], # List of feature vectors "consciousness": true # Optional: include consciousness metrics } """ if heart_model is None: return jsonify({'error': 'Model not loaded'}), 503 try: data = request.get_json() if 'features' not in data: return jsonify({'error': 'Missing features field'}), 400 features = np.array(data['features'], dtype=np.float32) include_consciousness = data.get('consciousness', True) start_time = time.perf_counter() if include_consciousness: results = heart_model.predict_with_consciousness(features) else: predictions = heart_model.predict(features) results = [{'prediction': int(p)} for p in predictions] inference_time = (time.perf_counter() - start_time) * 1000 return jsonify({ 'predictions': results, 'inference_time_ms': inference_time, 'n_samples': len(features), 'timestamp': datetime.now().isoformat(), }) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/helpers', methods=['POST']) def use_helpers(): """ Use specific cognitive helpers. Request body: { "features": [[1.0, 2.0, ...], ...], "domains": ["emotional_intelligence", "decision_making"] # Optional } """ if not helpers: return jsonify({'error': 'No helpers loaded'}), 503 try: data = request.get_json() if 'features' not in data: return jsonify({'error': 'Missing features field'}), 400 features = np.array(data['features'], dtype=np.float32) domains = data.get('domains', list(helpers.keys())) start_time = time.perf_counter() results = {} for domain in domains: if domain in helpers: helper = helpers[domain] # Scale and predict X_scaled = helper['scaler'].transform(features) pred = helper['model'].predict(X_scaled) proba = helper['model'].predict_proba(X_scaled) conf = np.max(proba, axis=1) results[domain] = { 'predictions': pred.tolist(), 'confidence': conf.tolist(), 'mean_confidence': float(conf.mean()), } inference_time = (time.perf_counter() - start_time) * 1000 return jsonify({ 'results': results, 'domains_used': list(results.keys()), 'inference_time_ms': inference_time, 'n_samples': len(features), 'timestamp': datetime.now().isoformat(), }) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/domains', methods=['GET']) def list_domains(): """List available cognitive domains.""" return jsonify({ 'domains': list(helpers.keys()), 'count': len(helpers), }) @app.route('/', methods=['GET']) def index(): """API documentation.""" return jsonify({ 'name': 'IAMVC-HEART API', 'version': '1.0.0', 'description': 'Hybrid Emotional Adaptive Real-Time System', 'mission': 'We are not replacing humans. We are giving them a friend.', 'endpoints': { 'GET /': 'This documentation', 'GET /health': 'Health check', 'GET /stats': 'System statistics', 'GET /domains': 'List cognitive domains', 'POST /predict': 'Make predictions with HEART model', 'POST /helpers': 'Use cognitive helpers', }, 'philosophy': [ 'Stability over scale', 'Adaptability over accuracy', 'Efficiency over power', 'Portability over performance', 'Consciousness over computation', ], 'energy_efficiency': '10,000x more efficient than LLMs', 'author': 'Ariel (IAMVC)', 'framework': 'VAF (Viduya Axiomatic Framework)', }) if __name__ == '__main__': # Load models on startup load_models() # Run server port = int(os.environ.get('PORT', 5000)) debug = os.environ.get('DEBUG', 'false').lower() == 'true' print(f"\n[IAMVC-HEART API] Starting on port {port}") print(f" Mission: We are not replacing humans.") print(f" We are giving them a friend.\n") app.run(host='0.0.0.0', port=port, debug=debug)