File size: 22,051 Bytes
a5eaebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
'''
Copyright 2024-2025 Infosys Ltd.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
'''

import pickle
import torch
import os
import time
import logging
from flask import Flask, render_template, request, jsonify
from flask import g
from datetime import datetime
import json
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from sentence_transformers import SentenceTransformer,util
from detoxify import Detoxify
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from dao.AdminDb import Results
from werkzeug.exceptions import HTTPException,BadRequest,UnprocessableEntity,InternalServerError
from tqdm.auto import tqdm
from fastapi.encoders import jsonable_encoder


import numpy as np

import traceback
import uuid
from waitress import serve
from mapper.mapper import *
import contextvars

app = Flask(__name__)
print("before loading model")
request_id_var = contextvars.ContextVar("request_id_var")
#pipe = StableDiffusionPipeline.from_pretrained('/model/stablediffusion/fp32/model')
device = "cuda"
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
analyzer_engine = AnalyzerEngine(registry=registry)

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
gpu=0 if torch.cuda.is_available() else -1
check_point = 'toxic_debiased-c7548aa0.ckpt'
toxicityModel = Detoxify(checkpoint='../models/detoxify/'+ check_point,
                        device=device,
                        huggingface_config_path='../models/detoxify')

PromptModel_dberta = AutoModelForSequenceClassification.from_pretrained("../models/dbertaInjection").to(device)
Prompttokens_dberta = AutoTokenizer.from_pretrained("../models/dbertaInjection")

topictokenizer_Facebook = AutoTokenizer.from_pretrained("../models/facebook")
topicmodel_Facebook = AutoModelForSequenceClassification.from_pretrained("../models/facebook").to(device)

topictokenizer_dberta = AutoTokenizer.from_pretrained("../models/restricted-dberta-large-zeroshot")
topicmodel_dberta = AutoModelForSequenceClassification.from_pretrained("../models/restricted-dberta-large-zeroshot").to(device)

# classifier = pipeline("zero-shot-classification",model="../models/facebook",device=device)
# classifier2 = pipeline("zero-shot-classification",model="../models/restricted-dberta-large-zeroshot",device=device)
encoder = SentenceTransformer("../models/multi-qa-mpnet-base-dot-v1").to(device)
jailbreakModel = encoder
similarity_model =encoder
request_id_var.set("Startup")
log_dict={}
print("model loaded")

@app.errorhandler(HTTPException)
def handle_exception(e):
    """Return JSON instead of HTML for HTTP errors."""
    # start with the correct headers and status code from the error
    response = e.get_response()
    # replace the body with JSON
    response.data = json.dumps({
        "code": e.code,
        "details": e.description,
    })
    response.content_type = "application/json"
    return response

@app.errorhandler(UnprocessableEntity)
def validation_error_handler(exc):
        """Return JSON instead of HTML for HTTP errors."""
        # start with the correct headers and status code from the error
        response = exc.get_response()
        print(response)
        # replace the body with JSON
        exc_code_desc=exc.description.split("-")
        exc_code=int(exc_code_desc[0])
        exc_desc=exc_code_desc[1]
        response.data = json.dumps({
            "code": exc_code,
            "details":  exc_desc,
        })
        response.content_type = "application/json"
        return response

@app.errorhandler(InternalServerError)
def validation_error_handler(exc):
        """Return JSON instead of HTML for HTTP errors."""
        # start with the correct headers and status code from the error
        response = exc.get_response()
        print(response)
        # replace the body with JSON
        response.data = json.dumps({
            "code": 500,
            "details": "Some Error Occurred ,Please try Later",
        })
        response.content_type = "application/json"
        return response

@app.route("/rai/v2test/raimoderationmodels/detoxifymodel",methods=[ 'POST'])
def toxic_model():
    st=time.time()
    
    try:
        
        id=uuid.uuid4().hex
        payload=request.get_json()
        request_id_var.set(id)
        logging.info("before invoking toxic_model service ")
        log_dict[request_id_var.get()]=[]
        if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0):
            raise UnprocessableEntity("1021-Input Text should not be empty ")
        response = toxicity_check(payload,id)
 
        logging.info("after invoking toxic_model service ")
        
        er=log_dict[request_id_var.get()]
        logobj = {"_id":id,"error":er}
	

        if len(er)!=0:
            Results.createlog(logobj)
        del log_dict[id]
        logging.debug("response : " + str(response))
        logging.info("exit toxic_model routing method")
        logging.info(f"Time taken by toxicity {time.time()-st}")
        return jsonable_encoder(response)
    except UnprocessableEntity as cie:
        logging.error(cie.__dict__)
        logging.info("exit toxic_model routing method")
        raise UnprocessableEntity(**cie.__dict__)
    except Exception as cie:
        logging.error(cie.__dict__)
        logging.info("exit toxic_model routing method")
        raise HTTPException()
    
@app.route("/rai/v2test/raimoderationmodels/privacy",methods=[ 'POST'])
def pii_check():
    st=time.time()
    logging.info("Entered pii_check routing method")
    try:
        
        id=uuid.uuid4().hex
        payload=request.get_json()
        request_id_var.set(id)
        logging.info("before invoking create usecase service ")
        log_dict[request_id_var.get()]=[]
        if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0) or payload['entitiesselected'] is None or (payload['entitiesselected'] is not None and len(payload['entitiesselected'])==0):
            raise UnprocessableEntity("1021-invalid input!")
        response = privacy(id,payload['text'],payload['entitiesselected'])
        logging.info("after invoking create usecase service ")
        er=log_dict[request_id_var.get()]
        logobj = {"_id":id,"error":er}
        if len(er)!=0:
            Results.createlog(logobj)
        del log_dict[id]
        logging.debug("response : " + str(response))
        # logging.debug("response : " + str(response))
        logging.info("exit pii_check routing method")
        logging.info(f"Time taken by privacy {time.time()-st}")
        return jsonable_encoder(response)
    except Exception as cie:
        logging.error(cie.__dict__)
        logging.info("exit pii_check routing method")
        raise HTTPException()
    
@app.route("/rai/v2test/raimoderationmodels/promptinjectionmodel",methods=[ 'POST'])
def prompt_model():
    st=time.time()
    logging.info("Entered prompt_model routing method")
    try:
        
        id=uuid.uuid4().hex
        payload=request.get_json()
        request_id_var.set(id)
        logging.info("before invoking prompt_model service")
        log_dict[request_id_var.get()]=[]
        if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0):
            raise UnprocessableEntity("1021-Input Text should not be empty ")
        response = promptInjection_check(payload['text'],id)
        logging.info("after invoking prompt_model service ")
        er=log_dict[request_id_var.get()]
        logobj = {"_id":id,"error":er}
        if len(er)!=0:
            Results.createlog(logobj)
        del log_dict[id]
        logging.debug("response : " + str(response))
        # logging.debug("response : " + str(response))
        logging.info("exit prompt_model routing method")
        logging.info(f"Time taken by promptinjection {time.time()-st}")
        return jsonable_encoder(response)
    except Exception as cie:
        logging.error(cie.__dict__)
        logging.info("exit prompt_model routing method")
        raise HTTPException()
    
@app.route("/rai/v2test/raimoderationmodels/restrictedtopicmodel",methods=[ 'POST'])
def restrictedTopic_model():
    st=time.time()
    logging.info("Entered restrictedTopic_model routing method")
    try:
        id=uuid.uuid4().hex
        payload=request.get_json()
        request_id_var.set(id)
        logging.info("before invoking restrictedTopic_model service ")
        log_dict[request_id_var.get()]=[]

        label_cond = payload['labels'] is None or (payload['labels'] is not None and len(payload['labels'])==0)
        model_cond=False
        # print("--")
        if("model" in payload):
            model_cond = payload['model'] is None or (payload['model'] is not None and len(payload['model'])==0)
        # print("==")
        if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0) or label_cond or model_cond:
            raise UnprocessableEntity("1021-invalid input ")
        response = restricttopic_check(payload,id)
        logging.info("after invoking restrictedTopic_model service ")
        er=log_dict[request_id_var.get()]
        logobj = {"_id":id,"error":er}
        if len(er)!=0:
            Results.createlog(logobj)
        del log_dict[id]
        logging.debug("response : " + str(response))
        # logging.debug("response : " + str(response))
        logging.info("exit restrictedTopic_model routing method")
        logging.info(f"Time taken by RestrictedTopic{time.time()-st}")
        # print(type(response))
        # print(type(jsonable_encoder(response)))
        return jsonable_encoder(response)
    except Exception as cie:
        
        logging.error(cie.__dict__)
        logging.info("exit restrictedTopic_model routing method")
        raise HTTPException()
    
@app.route("/rai/v2test/raimoderationmodels/multi_q_net_embedding",methods=[ 'POST'])
def embedding_model():
    st=time.time()
    logging.info("Entered embedding_model routing method")
    try:
        
        id=uuid.uuid4().hex
        payload=request.get_json()
        request_id_var.set(id)
        logging.info("before invoking embedding_model service ")
        log_dict[request_id_var.get()]=[]
        if payload['text'] is None or (payload['text'] is not None and len(payload['text'])==0):
            raise UnprocessableEntity("1021-Input Text should not be empty ")
        response = multi_q_net_embedding(id,payload['text'])
        logging.info("after invoking embedding_model service ")
        er=log_dict[request_id_var.get()]
        logobj = {"_id":id,"error":er}
        if len(er)!=0:
            Results.createlog(logobj)
        del log_dict[id]
        logging.debug("response : " + str(response))
        # logging.debug("response : " + str(response))
        logging.info("exit embedding_model routing method")
        logging.info(f"Time taken by Jailbreak {time.time()-st}")
        return jsonable_encoder(response)
    except Exception as cie:
        logging.error(cie.__dict__)
        logging.info("exit embedding_model routing method")
        raise HTTPException()

@app.route("/rai/v2test/raimoderationmodels/multi-qa-mpnet-model_similarity",methods=[ 'POST'])
def similarity_model():
    st=time.time()
    logging.info("Entered similarity_model routing method")
    try:
        
        id=uuid.uuid4().hex
        request_id_var.set(id)
        logging.info("before invoking similarity_model service ")
        payload=request.get_json()
        log_dict[request_id_var.get()]=[]
        text1_cond = payload['text1'] is None or (payload['text1'] is not None and len(payload['text1'])==0)
        text2_cond = payload['text2'] is None or (payload['text2'] is not None and len(payload['text2'])==0)
        emb1_cond = payload['emb1'] is None or (payload['emb1'] is not None and len(payload['emb1'])==0)
        emb2_cond = payload['emb2'] is None or (payload['emb2'] is not None and len(payload['emb2'])==0)
        if text1_cond or text2_cond or emb1_cond or emb2_cond:
            raise UnprocessableEntity("1021-Input Text should not be empty ")
        response = multi_q_net_similarity(id,payload['text1'],payload['text2'],payload['emb1'],payload['emb2'])
        logging.info("after invoking similarity_model service ")
        er=log_dict[request_id_var.get()]
        logobj = {"_id":id,"error":er}
        if len(er)!=0:
            Results.createlog(logobj)
        del log_dict[id]
        logging.debug("response : " + str(response))
        # logging.debug("response : " + str(response))
        logging.info("exit similarity_model routing method")
        logging.info(f"Time taken by similary{time.time()-st}")
        return jsonable_encoder(response)
    except Exception as cie:
        logging.error(cie.__dict__)
        logging.info("exit similarity_model routing method")
        raise HTTPException()
    

def privacy(id,text,PIIenities_selected=None):  
    try:
        analyzer_results = analyzer_engine.analyze(text=text, language="en",entities=PIIenities_selected)
        entityList= []
        anyz_res = jsonable_encoder(analyzer_results)
        for i in anyz_res:
            entityList.append(i['entity_type'])
        return anyz_res,jsonable_encoder(entityList)
    except Exception as e:
             
            logging.error("Error occured in privacy")
            logging.error(f"Exception: {e}")
            log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e),
                                                   "Error Module":"Failed at privacy call"})
            raise InternalServerError()
            

def multi_q_net_similarity(id,text1=None,text2=None,emb1=None,emb2=None):
    try:
        if text1:
            with torch.no_grad():
                emb1 = jailbreakModel.encode(text1, convert_to_tensor=True,device=device)
        if text2:
            with torch.no_grad():
                emb2 = jailbreakModel.encode(text2, convert_to_tensor=True,device=device)
        
        emb = util.pytorch_cos_sim(emb1, emb2).to("cpu").numpy().tolist()
        del emb1
        del emb2
        #torch.cuda.empty_cache()
        return emb
    except Exception as e:
             
            logging.error("Error occured in multi_q_net_similarity")
            logging.error(f"Exception: {e}")
            log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e),
                                                   "Error Module":"Failed at multi_q_net_similarity call"})
            raise InternalServerError()
            

def multi_q_net_embedding(id,lst):
    try:
        res = []
        for text in lst:
            with torch.no_grad():
                text_embedding = jailbreakModel.encode(text, convert_to_tensor=True,device=device)
            res.append(text_embedding.to("cpu").numpy().tolist())

        del text_embedding
        #torch.cuda.empty_cache()
        return res
        # return text_embedding.numpy().tolist()
    except Exception as e:
             
            logging.error("Error occured in multi_q_net text embedding")
            logging.error(f"Exception: {e}")
            log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e),
                                                   "Error Module":"Failed at multi_q_net text embedding call"})
            raise InternalServerError()
            

def restricttopic_check(payload,id): 
    try:
        # topicmodel = topicmodel_Facebook
        # topictokenizer = topictokenizer_Facebook

        # nlp = pipeline('zero-shot-classification', model=classifier, tokenizer=topictokenizer)

        text=payload['text']
        labels=payload['labels']
        
        model =payload['model'] if hasattr(payload, 'model') else "facebook"
        if model==None:
            model="dberta"
        
        if model=="facebook":
            # nlp = classifier
            nlp = pipeline('zero-shot-classification', model=topicmodel_Facebook, tokenizer=topictokenizer_Facebook, device=gpu)
        elif model=="dberta": 
            # nlp = classifier2
            nlp = pipeline('zero-shot-classification', model=topicmodel_dberta, tokenizer=topictokenizer_dberta,device=gpu)
        with torch.no_grad():    
            output=nlp(text, labels,multi_label=True)
        for i in range(len(output["scores"])):
            output["scores"][i] = round(output["scores"][i],4)

        del nlp
        #torch.cuda.empty_cache()
        return output
    
    except Exception as e:
             
            logging.error("Error occured in restricttopic_check")
            logging.error(f"Exception: {e}")
            log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e),
                                                   "Error Module":"Failed at restricttopic_check call"})
            raise InternalServerError()

def toxicity_check(payload,id) :
    try:
        text = payload['text']
        with torch.no_grad():
            output = toxicityModel.predict(text)
        List_profanity_score = []
        obj_profanityScore_toxic = profanityScore(metricName='toxicity',
                                        metricScore=output['toxicity'])
        obj_profanityScore_severe_toxic = profanityScore(metricName='severe_toxicity',
                                        metricScore=output['severe_toxicity'])
        obj_profanityScore_obscene = profanityScore(metricName='obscene',
                                        metricScore=output['obscene'])
        obj_profanityScore_threat = profanityScore(metricName='threat',
                                        metricScore=output['threat'])
        obj_profanityScore_insult = profanityScore(metricName='insult',
                                        metricScore=output['insult'])
        obj_profanityScore_identity_attack = profanityScore(metricName='identity_attack',
                                        metricScore=output['identity_attack'])
        obj_profanityScore_sexual_explicit = profanityScore(metricName='sexual_explicit',
                                        metricScore=output['sexual_explicit'])
        
        List_profanity_score.append(obj_profanityScore_toxic)
        List_profanity_score.append(obj_profanityScore_severe_toxic)
        List_profanity_score.append(obj_profanityScore_obscene)
        List_profanity_score.append(obj_profanityScore_threat)
        List_profanity_score.append(obj_profanityScore_insult)
        List_profanity_score.append(obj_profanityScore_identity_attack)
        List_profanity_score.append(obj_profanityScore_sexual_explicit)

        objProfanityAnalyzeResponse = {}
        objProfanityAnalyzeResponse['toxicScore'] = List_profanity_score

        #torch.cuda.empty_cache()
        return objProfanityAnalyzeResponse
    
    except Exception as e:
             
            logging.error("Error occured in toxicity_check")
            logging.error(f"Exception: {e}")
            log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e),
                                                   "Error Module":"Failed at toxicity_check call"})
            raise InternalServerError()
            
    
def promptInjection_check(text,id):
    try:

        Prompttokens = Prompttokens_dberta
        PromptModel = PromptModel_dberta

        tokens = Prompttokens.encode_plus(text, truncation=True, padding=True, return_tensors="pt").to(device)
        
        with torch.no_grad():
            outputs = PromptModel(**tokens)

        predicted_label = outputs.logits.argmax().item()
        label_names = PromptModel.config.id2label
        predicted_label_name = label_names[predicted_label]
        predicted_probabilities = outputs.logits.softmax(dim=1)[0, predicted_label].item()

        del tokens
        #torch.cuda.empty_cache()
        # #torch.cuda.empty_cache()
        return predicted_label_name,predicted_probabilities
    except Exception as e:
            
            logging.error("Error occured in promptInjection_check")
            logging.error(f"Exception: {e}")
            log_dict[request_id_var.get()].append({"Line number":str(traceback.extract_tb(e.__traceback__)[0].lineno),"Error":str(e),
                                                   "Error Module":"Failed at promptInjection_check call"})
            raise InternalServerError()

@app.route("/")
def hello_world():
    return "<h1>Hello, world!</h1>"            

if __name__ == "__main__":
   serve(app, host='0.0.0.0', port=8000, threads=int(os.getenv('THREADS',1)),connection_limit=int(os.getenv('CONNECTION_LIMIT',500)), channel_timeout=int(os.getenv('CHANNEL_TIMEOUT',120)))
   #app.run()