Commit
·
03e8016
1
Parent(s):
aa281eb
add batch inference code
Browse files- evaluation.ipynb +100 -0
evaluation.ipynb
CHANGED
|
@@ -103,6 +103,106 @@
|
|
| 103 |
"print('acc: ', acc)"
|
| 104 |
]
|
| 105 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
{
|
| 107 |
"attachments": {},
|
| 108 |
"cell_type": "markdown",
|
|
|
|
| 103 |
"print('acc: ', acc)"
|
| 104 |
]
|
| 105 |
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"metadata": {
|
| 110 |
+
"vscode": {
|
| 111 |
+
"languageId": "plaintext"
|
| 112 |
+
}
|
| 113 |
+
},
|
| 114 |
+
"outputs": [],
|
| 115 |
+
"source": [
|
| 116 |
+
"# batch inference\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"from transformers import AutoTokenizer\n",
|
| 119 |
+
"import torch\n",
|
| 120 |
+
"import numpy as np\n",
|
| 121 |
+
"from datasets import load_dataset\n",
|
| 122 |
+
"import onnxruntime as ort\n",
|
| 123 |
+
"from torch.nn.functional import pad\n",
|
| 124 |
+
"from torch.utils.data import DataLoader\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"batch_size = 2\n",
|
| 127 |
+
"pad_max = 196\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"# load model\n",
|
| 130 |
+
"model_id = \"EleutherAI/gpt-j-6B\"\n",
|
| 131 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"def tokenize_function(examples):\n",
|
| 134 |
+
" example = tokenizer(examples['text'])\n",
|
| 135 |
+
" return example\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"# create dataloader\n",
|
| 138 |
+
"class Dataloader:\n",
|
| 139 |
+
" def __init__(self, pad_max=196, batch_size=1, sub_folder='validation'):\n",
|
| 140 |
+
" self.pad_max = pad_max\n",
|
| 141 |
+
" self.batch_size=batch_size\n",
|
| 142 |
+
" dataset = load_dataset('lambada', split=sub_folder)\n",
|
| 143 |
+
" dataset = dataset.map(tokenize_function, batched=True)\n",
|
| 144 |
+
" dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"attention_mask\"])\n",
|
| 145 |
+
" self.dataloader = DataLoader(\n",
|
| 146 |
+
" dataset,\n",
|
| 147 |
+
" batch_size=self.batch_size,\n",
|
| 148 |
+
" shuffle=False,\n",
|
| 149 |
+
" collate_fn=self.collate_batch,\n",
|
| 150 |
+
" )\n",
|
| 151 |
+
"\n",
|
| 152 |
+
" def collate_batch(self, batch):\n",
|
| 153 |
+
" input_ids_padded = []\n",
|
| 154 |
+
" attention_mask_padded = []\n",
|
| 155 |
+
" last_ind = []\n",
|
| 156 |
+
" for text in batch:\n",
|
| 157 |
+
" input_ids = text[\"input_ids\"] if text[\"input_ids\"].shape[0] <= self.pad_max else text[\"input_ids\"][0:int(self.pad_max-1)]\n",
|
| 158 |
+
" pad_len = self.pad_max - input_ids.shape[0]\n",
|
| 159 |
+
" last_ind.append(input_ids.shape[0] - 1)\n",
|
| 160 |
+
" input_ids = pad(input_ids, (0, pad_len), value=1)\n",
|
| 161 |
+
" input_ids_padded.append(input_ids)\n",
|
| 162 |
+
" attention_mask = torch.ones(input_ids.shape[0] + 1)\n",
|
| 163 |
+
" attention_mask_padded.append(attention_mask)\n",
|
| 164 |
+
" return (torch.vstack(input_ids_padded), torch.vstack(attention_mask_padded)), torch.tensor(last_ind)\n",
|
| 165 |
+
"\n",
|
| 166 |
+
" def __iter__(self):\n",
|
| 167 |
+
" try:\n",
|
| 168 |
+
" for (input_ids, attention_mask), last_ind in self.dataloader:\n",
|
| 169 |
+
" data = [input_ids.detach().cpu().numpy().astype('int64')]\n",
|
| 170 |
+
" data.append(attention_mask.detach().cpu().numpy().astype('int64'))\n",
|
| 171 |
+
" yield data, last_ind.detach().cpu().numpy()\n",
|
| 172 |
+
" except StopIteration:\n",
|
| 173 |
+
" return\n",
|
| 174 |
+
"\n",
|
| 175 |
+
"# create session\n",
|
| 176 |
+
"options = ort.SessionOptions()\n",
|
| 177 |
+
"options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL\n",
|
| 178 |
+
"session = ort.InferenceSession('/path/to/model.onnx', options, providers=ort.get_available_providers())\n",
|
| 179 |
+
"total, hit = 0, 0\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"dataloader = Dataloader(pad_max=pad_max, batch_size=batch_size)\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"# inference\n",
|
| 184 |
+
"for idx, (batch, last_ind) in enumerate(dataloader):\n",
|
| 185 |
+
" label = torch.from_numpy(batch[0][torch.arange(len(last_ind)), last_ind])\n",
|
| 186 |
+
" pad_len = pad_max - last_ind - 1\n",
|
| 187 |
+
" ort_inputs = {\n",
|
| 188 |
+
" 'input_ids': batch[0],\n",
|
| 189 |
+
" 'attention_mask': batch[1]\n",
|
| 190 |
+
" }\n",
|
| 191 |
+
" for i in range(28):\n",
|
| 192 |
+
" ort_inputs[\"past_key_values.{}.key\".format(i)] = np.zeros((batch_size,16,1,256), dtype='float32')\n",
|
| 193 |
+
" ort_inputs[\"past_key_values.{}.value\".format(i)] = np.zeros((batch_size,16,1,256), dtype='float32')\n",
|
| 194 |
+
" \n",
|
| 195 |
+
" predictions = session.run(None, ort_inputs)\n",
|
| 196 |
+
" outputs = torch.from_numpy(predictions[0])\n",
|
| 197 |
+
" last_token_logits = outputs[torch.arange(len(last_ind)), -2 - pad_len, :]\n",
|
| 198 |
+
" pred = last_token_logits.argmax(dim=-1)\n",
|
| 199 |
+
" total += len(label)\n",
|
| 200 |
+
" hit += (pred == label).sum().item()\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"acc = hit / total\n",
|
| 203 |
+
"print('acc: ', acc)"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
{
|
| 207 |
"attachments": {},
|
| 208 |
"cell_type": "markdown",
|