File size: 8,432 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import json
import time
import argparse
import pathlib
from tqdm import tqdm
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import _LRScheduler
import traceback

CIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
MILESTONES = [60, 120, 160]


class WideBasicBlock(nn.Module):
    def __init__(self, in_planes, out_planes, dropout_rate, stride=1):
        super(WideBasicBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.dropout = nn.Dropout(p=dropout_rate)
        self.bn2 = nn.BatchNorm2d(out_planes)
        self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.relu = nn.ReLU(inplace=True)

        if in_planes != out_planes:
            self.shortcut = nn.Conv2d(
                in_planes,
                out_planes,
                kernel_size=1,
                stride=stride,
                padding=0,
                bias=False,
            )
        else:
            self.shortcut = nn.Identity()

    def forward(self, x):
        out = self.relu(self.bn1(x))
        skip_x = x if isinstance(self.shortcut, nn.Identity) else out

        out = self.conv1(out)
        out = self.relu(self.bn2(out))
        out = self.dropout(out)
        out = self.conv2(out)
        out += self.shortcut(skip_x)

        return out


class WideResNet(nn.Module):
    def __init__(self, depth, widen_factor, num_classes, dropout_rate):
        super(WideResNet, self).__init__()

        assert (depth - 4) % 6 == 0, "Wide-resnet depth should be 6n+4"
        n = (depth - 4) / 6

        n_stages = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]

        self.conv1 = nn.Conv2d(3, n_stages[0], kernel_size=3, stride=1, padding=1, bias=False)
        self.stage1 = self._make_wide_stage(WideBasicBlock, n_stages[0], n_stages[1], n, dropout_rate, stride=1)
        self.stage2 = self._make_wide_stage(WideBasicBlock, n_stages[1], n_stages[2], n, dropout_rate, stride=2)
        self.stage3 = self._make_wide_stage(WideBasicBlock, n_stages[2], n_stages[3], n, dropout_rate, stride=2)
        self.bn1 = nn.BatchNorm2d(n_stages[3])
        self.relu = nn.ReLU(inplace=True)
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.linear = nn.Linear(n_stages[3], num_classes)

        self._init_params()

    @staticmethod
    def _make_wide_stage(block, in_planes, out_planes, num_blocks, dropout_rate, stride):
        stride_list = [stride] + [1] * (int(num_blocks) - 1)
        in_planes_list = [in_planes] + [out_planes] * (int(num_blocks) - 1)
        blocks = []

        for _in_planes, _stride in zip(in_planes_list, stride_list):
            blocks.append(block(_in_planes, out_planes, dropout_rate, _stride))

        return nn.Sequential(*blocks)

    def _init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                if m.affine:
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                if m.bias is not None:
                    m.bias.data.zero_()

    def forward(self, x):
        out = self.conv1(x)
        out = self.stage1(out)
        out = self.stage2(out)
        out = self.stage3(out)
        out = self.relu(self.bn1(out))
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.linear(out)

        return out


def wide_resnet_28_10_old():
    return WideResNet(
        depth=28,
        widen_factor=10,
        num_classes=100,
        dropout_rate=0.0,
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--batch_size", type=int, default=128)
    parser.add_argument("--num_workers", type=int, default=4)
    parser.add_argument("--out_dir", type=str, default="run_1")
    parser.add_argument("--in_channels", type=int, default=3)
    parser.add_argument("--data_root", type=str, default='./datasets/cifar100/')
    parser.add_argument("--learning_rate", type=float, default=0.1)
    parser.add_argument("", type=int, default=200)
    parser.add_argument("--val_per_epoch", type=int, default=5)
    config = parser.parse_args()


    try: 
        final_infos = {}
        all_results = {}

        pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)

        model = wide_resnet_28_10_old().cuda()
        transform_train = transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
                                            (4, 4, 4, 4), mode='reflect').squeeze()),
            transforms.ToPILImage(),
            transforms.RandomCrop(32),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD),
        ])

        transform_test = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD)
        ])
        train_dataset = datasets.CIFAR100(root=config.data_root, train=True,
                                        download=True, transform=transform_train)
        test_dataset = datasets.CIFAR100(root=config.data_root, train=False,
                                        download=True, transform=transform_test)
        train_loader = DataLoader(train_dataset, shuffle=True, num_workers=config.num_workers, batch_size=config.batch_size)
        test_loader = DataLoader(test_dataset, shuffle=True, num_workers=config.num_workers, batch_size=config.batch_size)

        criterion = nn.CrossEntropyLoss().cuda()
        optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate, momentum=0.9, weight_decay=5e-4,
                                    nesterov=True)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader) * config.max_epoch)

        best_acc = 0.0
        start_time = time.time()
        for cur_epoch in tqdm(range(1, config.max_epoch + 1)):
            model.train()
            for batch_idx, (images, labels) in enumerate(tqdm(train_loader)):
                images, labels = images.cuda(), labels.cuda()
                optimizer.zero_grad()
                outputs = model(images)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
                scheduler.step()

            print(f'Finished epoch {cur_epoch} training.')

            if (cur_epoch % config.val_per_epoch == 0 and cur_epoch != 0) or cur_epoch == (config.max_epoch - 1):
                model.eval()
                correct = 0.0
                for images, labels in tqdm(test_loader):
                    images, labels = images.cuda(), labels.cuda()
                    with torch.no_grad():
                        outputs = model(images)

                    _, preds = outputs.max(1)
                    correct += preds.eq(labels).sum()
                cur_acc = correct.float() / len(test_loader.dataset)
                print(f"Epoch: {cur_epoch}, Accuracy: {correct.float() / len(test_loader.dataset)}")

                if cur_acc > best_acc:
                    best_acc = cur_acc
                    best_epoch = cur_epoch
                    torch.save(model.state_dict(), os.path.join(config.out_dir, 'best.pth'))

        final_infos = {
            "cifar100": {
                "means": {
                    "best_acc": best_acc.item(),
                    "epoch": best_epoch
                }
            }
        }

        with open(os.path.join(config.out_dir, "final_info.json"), "w") as f:
            json.dump(final_infos, f)

    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(config.out_dir, "traceback.log"), "w"))
        raise