File size: 10,396 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
from math import log10
import numpy as np
import torch
from sklearn.metrics import confusion_matrix
import logging
def PSNR(mse, peak=1.):
return 10 * log10((peak ** 2) / mse)
class SegMetric:
def __init__(self, values=0.):
assert isinstance(values, dict)
self.miou = values.miou
self.oa = values.get('oa', None)
self.miou = values.miou
self.miou = values.miou
def better_than(self, other):
if self.acc > other.acc:
return True
else:
return False
def state_dict(self):
_dict = dict()
_dict['acc'] = self.acc
return _dict
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class ConfusionMatrix:
"""Accumulate a confusion matrix for a classification task.
ignore_index only supports index <0, or > num_classes
"""
def __init__(self, num_classes, ignore_index=None):
self.value = 0
self.num_classes = num_classes
self.virtual_num_classes = num_classes + 1 if ignore_index is not None else num_classes
self.ignore_index = ignore_index
@torch.no_grad()
def update(self, pred, true):
"""Update the confusion matrix with the given predictions."""
true = true.flatten()
pred = pred.flatten()
if self.ignore_index is not None:
if (true == self.ignore_index).sum() > 0:
pred[true == self.ignore_index] = self.virtual_num_classes -1
true[true == self.ignore_index] = self.virtual_num_classes -1
unique_mapping = true.flatten() * self.virtual_num_classes + pred.flatten()
bins = torch.bincount(unique_mapping, minlength=self.virtual_num_classes**2)
self.value += bins.view(self.virtual_num_classes, self.virtual_num_classes)[:self.num_classes, :self.num_classes]
def reset(self):
"""Reset all accumulated values."""
self.value = 0
@property
def tp(self):
"""Get the true positive samples per-class."""
return self.value.diag()
@property
def actual(self):
"""Get the false negative samples per-class."""
return self.value.sum(dim=1)
@property
def predicted(self):
"""Get the false negative samples per-class."""
return self.value.sum(dim=0)
@property
def fn(self):
"""Get the false negative samples per-class."""
return self.actual - self.tp
@property
def fp(self):
"""Get the false positive samples per-class."""
return self.predicted - self.tp
@property
def tn(self):
"""Get the true negative samples per-class."""
actual = self.actual
predicted = self.predicted
return actual.sum() + self.tp - (actual + predicted)
@property
def count(self): # a.k.a. actual positive class
"""Get the number of samples per-class."""
# return self.tp + self.fn
return self.value.sum(dim=1)
@property
def frequency(self):
"""Get the per-class frequency."""
# we avoid dividing by zero using: max(denomenator, 1)
# return self.count / self.total.clamp(min=1)
count = self.value.sum(dim=1)
return count / count.sum().clamp(min=1)
@property
def total(self):
"""Get the total number of samples."""
return self.value.sum()
@property
def overall_accuray(self):
return self.tp.sum() / self.total
@property
def union(self):
return self.value.sum(dim=0) + self.value.sum(dim=1) - self.value.diag()
def all_acc(self):
return self.cal_acc(self.tp, self.count)
@staticmethod
def cal_acc(tp, count):
acc_per_cls = tp / count.clamp(min=1) * 100
over_all_acc = tp.sum() / count.sum() * 100
macc = torch.mean(acc_per_cls) # class accuracy
return macc.item(), over_all_acc.item(), acc_per_cls.cpu().numpy()
@staticmethod
def print_acc(accs):
out = '\n Class ' + ' Acc '
for i, values in enumerate(accs):
out += '\n' + str(i).rjust(8) + f'{values.item():.2f}'.rjust(8)
out += '\n' + '-' * 20
out += '\n' + ' Mean ' + f'{torch.mean(accs).item():.2f}'.rjust(8)
logging.info(out)
def all_metrics(self):
tp, fp, fn = self.tp, self.fp, self.fn,
iou_per_cls = tp / (tp + fp + fn).clamp(min=1) * 100
acc_per_cls = tp / self.count.clamp(min=1) * 100
over_all_acc = tp.sum() / self.total * 100
miou = torch.mean(iou_per_cls)
macc = torch.mean(acc_per_cls) # class accuracy
return miou.item(), macc.item(), over_all_acc.item(), iou_per_cls.cpu().numpy(), acc_per_cls.cpu().numpy()
def get_mious(tp, union, count):
iou_per_cls = (tp + 1e-10) / (union + 1e-10) * 100
acc_per_cls = (tp + 1e-10) / (count + 1e-10) * 100
over_all_acc = tp.sum() / count.sum() * 100
miou = torch.mean(iou_per_cls)
macc = torch.mean(acc_per_cls) # class accuracy
return miou.item(), macc.item(), over_all_acc.item(), iou_per_cls.cpu().numpy(), acc_per_cls.cpu().numpy()
def partnet_metrics(num_classes, num_parts, objects, preds, targets):
"""
Args:
num_classes:
num_parts:
objects: [int]
preds:[(num_parts,num_points)]
targets: [(num_points)]
Returns:
"""
shape_iou_tot = [0.0] * num_classes
shape_iou_cnt = [0] * num_classes
part_intersect = [np.zeros((num_parts[o_l]), dtype=np.float32) for o_l in range(num_classes)]
part_union = [np.zeros((num_parts[o_l]), dtype=np.float32) + 1e-6 for o_l in range(num_classes)]
for obj, cur_pred, cur_gt in zip(objects, preds, targets):
cur_num_parts = num_parts[obj]
cur_pred = np.argmax(cur_pred[1:, :], axis=0) + 1
cur_pred[cur_gt == 0] = 0
cur_shape_iou_tot = 0.0
cur_shape_iou_cnt = 0
for j in range(1, cur_num_parts):
cur_gt_mask = (cur_gt == j)
cur_pred_mask = (cur_pred == j)
has_gt = (np.sum(cur_gt_mask) > 0)
has_pred = (np.sum(cur_pred_mask) > 0)
if has_gt or has_pred:
intersect = np.sum(cur_gt_mask & cur_pred_mask)
union = np.sum(cur_gt_mask | cur_pred_mask)
iou = intersect / union
cur_shape_iou_tot += iou
cur_shape_iou_cnt += 1
part_intersect[obj][j] += intersect
part_union[obj][j] += union
if cur_shape_iou_cnt > 0:
cur_shape_miou = cur_shape_iou_tot / cur_shape_iou_cnt
shape_iou_tot[obj] += cur_shape_miou
shape_iou_cnt[obj] += 1
msIoU = [shape_iou_tot[o_l] / shape_iou_cnt[o_l] for o_l in range(num_classes)]
part_iou = [np.divide(part_intersect[o_l][1:], part_union[o_l][1:]) for o_l in range(num_classes)]
mpIoU = [np.mean(part_iou[o_l]) for o_l in range(num_classes)]
# Print instance mean
mmsIoU = np.mean(np.array(msIoU))
mmpIoU = np.mean(mpIoU)
return msIoU, mpIoU, mmsIoU, mmpIoU
def IoU_from_confusions(confusions):
"""
Computes IoU from confusion matrices.
:param confusions: ([..., n_c, n_c] np.int32). Can be any dimension, the confusion matrices should be described by
the last axes. n_c = number of classes
:param ignore_unclassified: (bool). True if the the first class should be ignored in the results
:return: ([..., n_c] np.float32) IoU score
"""
# Compute TP, FP, FN. This assume that the second to last axis counts the truths (like the first axis of a
# confusion matrix), and that the last axis counts the predictions (like the second axis of a confusion matrix)
TP = np.diagonal(confusions, axis1=-2, axis2=-1)
TP_plus_FN = np.sum(confusions, axis=-1)
TP_plus_FP = np.sum(confusions, axis=-2)
# Compute IoU
IoU = TP / (TP_plus_FP + TP_plus_FN - TP + 1e-6)
# Compute miou with only the actual classes
mask = TP_plus_FN < 1e-3
counts = np.sum(1 - mask, axis=-1, keepdims=True)
miou = np.sum(IoU, axis=-1, keepdims=True) / (counts + 1e-6)
# If class is absent, place miou in place of 0 IoU to get the actual mean later
IoU += mask * miou
return IoU
def shapenetpart_metrics(num_classes, num_parts, objects, preds, targets, masks):
"""
Args:
num_classes:
num_parts:
objects: [int]
preds:[(num_parts,num_points)]
targets: [(num_points)]
masks: [(num_points)]
"""
total_correct = 0.0
total_seen = 0.0
Confs = []
for obj, cur_pred, cur_gt, cur_mask in zip(objects, preds, targets, masks):
obj = int(obj)
cur_num_parts = num_parts[obj]
cur_pred = np.argmax(cur_pred, axis=0)
cur_pred = cur_pred[cur_mask]
cur_gt = cur_gt[cur_mask]
correct = np.sum(cur_pred == cur_gt)
total_correct += correct
total_seen += cur_pred.shape[0]
parts = [j for j in range(cur_num_parts)]
Confs += [confusion_matrix(cur_gt, cur_pred, labels=parts)]
Confs = np.array(Confs)
obj_mious = []
objects = np.asarray(objects)
for l in range(num_classes):
obj_inds = np.where(objects == l)[0]
obj_confs = np.stack(Confs[obj_inds])
obj_IoUs = IoU_from_confusions(obj_confs)
obj_mious += [np.mean(obj_IoUs, axis=-1)]
objs_average = [np.mean(mious) for mious in obj_mious]
instance_average = np.mean(np.hstack(obj_mious))
class_average = np.mean(objs_average)
acc = total_correct / total_seen
print('Objs | Inst | Air Bag Cap Car Cha Ear Gui Kni Lam Lap Mot Mug Pis Roc Ska Tab')
print('-----|------|--------------------------------------------------------------------------------')
s = '{:4.1f} | {:4.1f} | '.format(100 * class_average, 100 * instance_average)
for Amiou in objs_average:
s += '{:4.1f} '.format(100 * Amiou)
print(s + '\n')
return acc, objs_average, class_average, instance_average
|