File size: 27,242 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
import os
import logging
import math
from dataclasses import dataclass, field
from typing import Optional, Tuple, List, Dict, Any
import time
import json
import pathlib
from tqdm import tqdm
import pandas as pd
import numpy as np
import argparse
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
from transformers import (
get_linear_schedule_with_warmup,
BertForSequenceClassification,
AutoTokenizer,
AdamW
)
from sklearn.metrics import roc_auc_score, f1_score, precision_score, recall_score
import traceback
from psycholinguistic_utils import PsycholinguisticFeatures, LinguisticRules, HybridNoiseAugmentation
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s',
level=logging.INFO,
handlers=[
logging.FileHandler('training.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
@dataclass
class TrainingConfig:
max_seq_len: int = 50
epochs: int = 3
batch_size: int = 32
learning_rate: float = 2e-5
patience: int = 1
max_grad_norm: float = 10.0
warmup_ratio: float = 0.1
model_path: str = './hug_ckpts/BERT_ckpt'
num_labels: int = 2
if_save_model: bool = True
out_dir: str = './run_1'
# Hybrid noise augmentation parameters
use_hybrid_augmentation: bool = True
sigma: float = 0.1 # Gaussian noise scaling factor
alpha: float = 0.5 # Hybrid weight
gamma: float = 0.1 # Attention adjustment parameter
# Evaluation parameters
evaluate_adversarial: bool = True
adversarial_types: List[str] = field(default_factory=lambda: ['sarcasm', 'negation', 'polysemy'])
def validate(self) -> None:
if self.max_seq_len <= 0:
raise ValueError("max_seq_len must be positive")
if self.epochs <= 0:
raise ValueError("epochs must be positive")
if self.batch_size <= 0:
raise ValueError("batch_size must be positive")
if not (0.0 < self.learning_rate):
raise ValueError("learning_rate must be between 0 and 1")
if not (0.0 <= self.sigma <= 1.0):
raise ValueError("sigma must be between 0 and 1")
if not (0.0 <= self.alpha <= 1.0):
raise ValueError("alpha must be between 0 and 1")
if not (0.0 <= self.gamma <= 1.0):
raise ValueError("gamma must be between 0 and 1")
class DataPrecessForSentence(Dataset):
def __init__(self, bert_tokenizer: AutoTokenizer, df: pd.DataFrame, max_seq_len: int = 50):
self.bert_tokenizer = bert_tokenizer
self.max_seq_len = max_seq_len
self.input_ids, self.attention_mask, self.token_type_ids, self.labels = self._get_input(df)
self.raw_texts = df['s1'].values # Save original text for noise augmentation
def __len__(self) -> int:
return len(self.labels)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, str]:
return (
self.input_ids[idx],
self.attention_mask[idx],
self.token_type_ids[idx],
self.labels[idx],
self.raw_texts[idx] # Return original text
)
def _get_input(self, df: pd.DataFrame) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
sentences = df['s1'].values
labels = df['similarity'].values
tokens_seq = list(map(self.bert_tokenizer.tokenize, sentences))
result = list(map(self._truncate_and_pad, tokens_seq))
input_ids = torch.tensor([i[0] for i in result], dtype=torch.long)
attention_mask = torch.tensor([i[1] for i in result], dtype=torch.long)
token_type_ids = torch.tensor([i[2] for i in result], dtype=torch.long)
labels = torch.tensor(labels, dtype=torch.long)
return input_ids, attention_mask, token_type_ids, labels
def _truncate_and_pad(self, tokens_seq: List[str]) -> Tuple[List[int], List[int], List[int]]:
tokens_seq = ['[CLS]'] + tokens_seq[:self.max_seq_len - 1]
padding_length = self.max_seq_len - len(tokens_seq)
input_ids = self.bert_tokenizer.convert_tokens_to_ids(tokens_seq)
input_ids += [0] * padding_length
attention_mask = [1] * len(tokens_seq) + [0] * padding_length
token_type_ids = [0] * self.max_seq_len
return input_ids, attention_mask, token_type_ids
class BertClassifier(nn.Module):
def __init__(
self,
model_path: str,
num_labels: int,
requires_grad: bool = True,
use_hybrid_augmentation: bool = True,
sigma: float = 0.1,
alpha: float = 0.5,
gamma: float = 0.1
):
super().__init__()
try:
self.bert = BertForSequenceClassification.from_pretrained(
model_path,
num_labels=num_labels
)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
except Exception as e:
logger.error(f"Failed to load BERT model: {e}")
raise
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hybrid noise augmentation settings
self.use_hybrid_augmentation = use_hybrid_augmentation
if use_hybrid_augmentation:
self.hybrid_augmentation = HybridNoiseAugmentation(
sigma=sigma,
alpha=alpha,
gamma=gamma
)
for param in self.bert.parameters():
param.requires_grad = requires_grad
def _apply_hybrid_augmentation(
self,
embeddings: torch.Tensor,
attention_mask: torch.Tensor,
texts: List[str]
) -> torch.Tensor:
if not self.use_hybrid_augmentation:
return embeddings
# Generate hybrid embeddings
hybrid_embeddings = self.hybrid_augmentation.generate_hybrid_embeddings(
embeddings, texts, self.tokenizer
)
return hybrid_embeddings
def _apply_attention_adjustment(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: torch.Tensor,
texts: List[str]
) -> torch.Tensor:
"""Adjust attention scores"""
if not self.use_hybrid_augmentation:
# Standard attention calculation
attention_scores = torch.matmul(query, key.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(query.size(-1))
# Apply attention mask
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
context_layer = torch.matmul(attention_probs, value)
return context_layer
# Generate psycholinguistic alignment matrix
H = self.hybrid_augmentation.generate_psycholinguistic_alignment_matrix(
texts, query.size(2), query.device
)
# Calculate attention scores
attention_scores = torch.matmul(query, key.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(query.size(-1))
# Add psycholinguistic alignment
gamma = self.hybrid_augmentation.gamma
attention_scores = attention_scores + gamma * H.unsqueeze(1) # Add dimension for multi-head attention
# Apply attention mask
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
context_layer = torch.matmul(attention_probs, value)
return context_layer
def forward(
self,
batch_seqs: torch.Tensor,
batch_seq_masks: torch.Tensor,
batch_seq_segments: torch.Tensor,
labels: torch.Tensor,
texts: Optional[List[str]] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# If hybrid noise augmentation is enabled but no texts provided, use standard forward pass
if self.use_hybrid_augmentation and texts is None:
logger.warning("Hybrid augmentation enabled but no texts provided. Using standard forward pass.")
self.use_hybrid_augmentation = False
# Standard BERT forward pass
outputs = self.bert(
input_ids=batch_seqs,
attention_mask=batch_seq_masks,
token_type_ids=batch_seq_segments,
labels=labels,
output_hidden_states=self.use_hybrid_augmentation # Need hidden states if using augmentation
)
loss = outputs.loss
logits = outputs.logits
# If hybrid noise augmentation is enabled, apply to hidden states
if self.use_hybrid_augmentation and texts:
# Get the last layer hidden states
hidden_states = outputs.hidden_states[-1]
# Apply hybrid noise augmentation
augmented_hidden_states = self._apply_hybrid_augmentation(
hidden_states, batch_seq_masks, texts
)
# Recalculate classifier output using augmented hidden states
pooled_output = augmented_hidden_states[:, 0] # Use [CLS] token representation
logits = self.bert.classifier(pooled_output)
# Recalculate loss
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.bert.config.num_labels), labels.view(-1))
probabilities = nn.functional.softmax(logits, dim=-1)
return loss, logits, probabilities
class BertTrainer:
def __init__(self, config: TrainingConfig):
self.config = config
self.config.validate()
self.model = BertClassifier(
config.model_path,
config.num_labels,
use_hybrid_augmentation=config.use_hybrid_augmentation,
sigma=config.sigma,
alpha=config.alpha,
gamma=config.gamma
)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
def _prepare_data(
self,
train_df: pd.DataFrame,
dev_df: pd.DataFrame,
test_df: pd.DataFrame
) -> Tuple[DataLoader, DataLoader, DataLoader]:
train_data = DataPrecessForSentence(
self.model.tokenizer,
train_df,
max_seq_len=self.config.max_seq_len
)
train_loader = DataLoader(
train_data,
shuffle=True,
batch_size=self.config.batch_size
)
dev_data = DataPrecessForSentence(
self.model.tokenizer,
dev_df,
max_seq_len=self.config.max_seq_len
)
dev_loader = DataLoader(
dev_data,
shuffle=False,
batch_size=self.config.batch_size
)
test_data = DataPrecessForSentence(
self.model.tokenizer,
test_df,
max_seq_len=self.config.max_seq_len
)
test_loader = DataLoader(
test_data,
shuffle=False,
batch_size=self.config.batch_size
)
return train_loader, dev_loader, test_loader
def _prepare_optimizer(self, num_training_steps: int) -> Tuple[AdamW, Any]:
param_optimizer = list(self.model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01
},
{
'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=self.config.learning_rate
)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=int(num_training_steps * self.config.warmup_ratio),
num_training_steps=num_training_steps
)
return optimizer, scheduler
def _initialize_training_stats(self) -> Dict[str, List]:
return {
'epochs_count': [],
'train_losses': [],
'train_accuracies': [],
'valid_losses': [],
'valid_accuracies': [],
'valid_aucs': []
}
def _update_training_stats(
self,
training_stats: Dict[str, List],
epoch: int,
train_metrics: Dict[str, float],
val_metrics: Dict[str, float]
) -> None:
training_stats['epochs_count'].append(epoch)
training_stats['train_losses'].append(train_metrics['loss'])
training_stats['train_accuracies'].append(train_metrics['accuracy'])
training_stats['valid_losses'].append(val_metrics['loss'])
training_stats['valid_accuracies'].append(val_metrics['accuracy'])
training_stats['valid_aucs'].append(val_metrics['auc'])
logger.info(
f"Training - Loss: {train_metrics['loss']:.4f}, "
f"Accuracy: {train_metrics['accuracy'] * 100:.2f}%"
)
logger.info(
f"Validation - Loss: {val_metrics['loss']:.4f}, "
f"Accuracy: {val_metrics['accuracy'] * 100:.2f}%, "
f"AUC: {val_metrics['auc']:.4f}"
)
def _save_checkpoint(
self,
target_dir: str,
epoch: int,
optimizer: AdamW,
best_score: float,
training_stats: Dict[str, List]
) -> None:
checkpoint = {
"epoch": epoch,
"model": self.model.state_dict(),
"optimizer": optimizer.state_dict(),
"best_score": best_score,
**training_stats
}
torch.save(
checkpoint,
os.path.join(target_dir, "best.pth.tar")
)
logger.info("Model saved successfully")
def _load_checkpoint(
self,
checkpoint_path: str,
optimizer: AdamW,
training_stats: Dict[str, List]
) -> float:
checkpoint = torch.load(checkpoint_path)
self.model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
for key in training_stats:
training_stats[key] = checkpoint[key]
logger.info(f"Loaded checkpoint from epoch {checkpoint['epoch']}")
return checkpoint["best_score"]
def _train_epoch(
self,
train_loader: DataLoader,
optimizer: AdamW,
scheduler: Any
) -> Dict[str, float]:
self.model.train()
total_loss = 0
correct_preds = 0
for batch in tqdm(train_loader, desc="Training"):
# Process batch containing texts
input_ids, attention_mask, token_type_ids, labels, texts = batch
input_ids = input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
token_type_ids = token_type_ids.to(self.device)
labels = labels.to(self.device)
optimizer.zero_grad()
loss, _, probabilities = self.model(
input_ids,
attention_mask,
token_type_ids,
labels,
texts # Pass original texts for noise augmentation
)
loss.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), self.config.max_grad_norm)
optimizer.step()
scheduler.step()
total_loss += loss.item()
correct_preds += (probabilities.argmax(dim=1) == labels).sum().item()
return {
'loss': total_loss / len(train_loader),
'accuracy': correct_preds / len(train_loader.dataset)
}
def _validate_epoch(self, dev_loader: DataLoader) -> Tuple[Dict[str, float], List[float]]:
self.model.eval()
total_loss = 0
correct_preds = 0
all_probs = []
all_labels = []
all_preds = []
with torch.no_grad():
for batch in tqdm(dev_loader, desc="Validating"):
input_ids, attention_mask, token_type_ids, labels, texts = batch
input_ids = input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
token_type_ids = token_type_ids.to(self.device)
labels = labels.to(self.device)
loss, _, probabilities = self.model(
input_ids,
attention_mask,
token_type_ids,
labels,
texts
)
total_loss += loss.item()
predictions = probabilities.argmax(dim=1)
correct_preds += (predictions == labels).sum().item()
all_probs.extend(probabilities[:, 1].cpu().numpy())
all_labels.extend(labels.cpu().numpy())
all_preds.extend(predictions.cpu().numpy())
metrics = {
'loss': total_loss / len(dev_loader),
'accuracy': correct_preds / len(dev_loader.dataset),
'auc': roc_auc_score(all_labels, all_probs),
'f1': f1_score(all_labels, all_preds, average='weighted'),
'precision': precision_score(all_labels, all_preds, average='weighted'),
'recall': recall_score(all_labels, all_preds, average='weighted')
}
return metrics, all_probs
def _evaluate_test_set(
self,
test_loader: DataLoader,
target_dir: str,
epoch: int
) -> Dict[str, float]:
test_metrics, all_probs = self._validate_epoch(test_loader)
logger.info(f"Test accuracy: {test_metrics['accuracy'] * 100:.2f}%")
logger.info(f"Test F1 score: {test_metrics['f1'] * 100:.2f}%")
logger.info(f"Test AUC: {test_metrics['auc']:.4f}")
test_prediction = pd.DataFrame({'prob_1': all_probs})
test_prediction['prob_0'] = 1 - test_prediction['prob_1']
test_prediction['prediction'] = test_prediction.apply(
lambda x: 0 if (x['prob_0'] > x['prob_1']) else 1,
axis=1
)
output_path = os.path.join(target_dir, f"test_prediction_epoch_{epoch}.csv")
test_prediction.to_csv(output_path, index=False)
logger.info(f"Test predictions saved to {output_path}")
if self.config.evaluate_adversarial:
self._evaluate_adversarial_robustness(test_loader, target_dir, epoch)
return test_metrics
def _evaluate_adversarial_robustness(
self,
test_loader: DataLoader,
target_dir: str,
epoch: int
) -> None:
"""Evaluate model robustness across different linguistic phenomena"""
logger.info("Evaluating adversarial robustness...")
linguistic_rules = LinguisticRules()
phenomenon_results = {
'sarcasm': {'correct': 0, 'total': 0},
'negation': {'correct': 0, 'total': 0},
'polysemy': {'correct': 0, 'total': 0}
}
self.model.eval()
with torch.no_grad():
for batch in tqdm(test_loader, desc="Adversarial Evaluation"):
input_ids, attention_mask, token_type_ids, labels, texts = batch
input_ids = input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
token_type_ids = token_type_ids.to(self.device)
labels = labels.to(self.device)
# Get model predictions
_, _, probabilities = self.model(
input_ids, attention_mask, token_type_ids, labels, texts
)
predictions = probabilities.argmax(dim=1)
# Check linguistic phenomena for each sample
for i, text in enumerate(texts):
# Check for sarcasm
if linguistic_rules.detect_sarcasm(text):
phenomenon_results['sarcasm']['total'] += 1
if predictions[i] == labels[i]:
phenomenon_results['sarcasm']['correct'] += 1
# Check for negation
if linguistic_rules.detect_negation(text):
phenomenon_results['negation']['total'] += 1
if predictions[i] == labels[i]:
phenomenon_results['negation']['correct'] += 1
# Check for polysemy
if linguistic_rules.find_polysemy_words(text):
phenomenon_results['polysemy']['total'] += 1
if predictions[i] == labels[i]:
phenomenon_results['polysemy']['correct'] += 1
phenomenon_accuracy = {}
for phenomenon, results in phenomenon_results.items():
if results['total'] > 0:
accuracy = results['correct'] / results['total']
phenomenon_accuracy[phenomenon] = accuracy
logger.info(f"Accuracy on {phenomenon}: {accuracy * 100:.2f}% ({results['correct']}/{results['total']})")
else:
phenomenon_accuracy[phenomenon] = 0.0
logger.info(f"No samples found for {phenomenon}")
with open(os.path.join(target_dir, f"adversarial_results_epoch_{epoch}.json"), "w") as f:
json.dump(phenomenon_accuracy, f)
def train_and_evaluate(
self,
train_df: pd.DataFrame,
dev_df: pd.DataFrame,
test_df: pd.DataFrame,
target_dir: str,
checkpoint: Optional[str] = None
) -> Dict[str, float]:
try:
os.makedirs(target_dir, exist_ok=True)
train_loader, dev_loader, test_loader = self._prepare_data(
train_df, dev_df, test_df
)
optimizer, scheduler = self._prepare_optimizer(
len(train_loader) * self.config.epochs
)
training_stats = self._initialize_training_stats()
best_score = 0.0
patience_counter = 0
best_test_metrics = None
if checkpoint:
best_score = self._load_checkpoint(checkpoint, optimizer, training_stats)
for epoch in range(1, self.config.epochs + 1):
logger.info(f"Training epoch {epoch}")
# Train
train_metrics = self._train_epoch(train_loader, optimizer, scheduler)
# Val
val_metrics, _ = self._validate_epoch(dev_loader)
self._update_training_stats(training_stats, epoch, train_metrics, val_metrics)
# Saving / Early stopping
if val_metrics['accuracy'] > best_score:
best_score = val_metrics['accuracy']
patience_counter = 0
if self.config.if_save_model:
self._save_checkpoint(
target_dir,
epoch,
optimizer,
best_score,
training_stats
)
best_test_metrics = self._evaluate_test_set(test_loader, target_dir, epoch)
else:
patience_counter += 1
if patience_counter >= self.config.patience:
logger.info("Early stopping triggered")
break
if best_test_metrics is None:
best_test_metrics = self._evaluate_test_set(test_loader, target_dir, epoch)
return best_test_metrics
except Exception as e:
logger.error(f"Training failed: {e}")
raise
def set_seed(seed: int = 42) -> None:
import random
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)
def main(args):
try:
config = TrainingConfig(out_dir=args.out_dir)
pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)
with open(os.path.join(config.out_dir, "config.json"), "w") as f:
config_dict = {k: v for k, v in config.__dict__.items()
if not k.startswith('_') and not callable(v)}
json.dump(config_dict, f, indent=2)
train_df = pd.read_csv(
os.path.join(args.data_path, "train.tsv"),
sep='\t',
header=None,
names=['similarity', 's1']
)
dev_df = pd.read_csv(
os.path.join(args.data_path, "dev.tsv"),
sep='\t',
header=None,
names=['similarity', 's1']
)
test_df = pd.read_csv(
os.path.join(args.data_path, "test.tsv"),
sep='\t',
header=None,
names=['similarity', 's1']
)
set_seed(2024)
logger.info(f"Starting training with hybrid augmentation: {config.use_hybrid_augmentation}")
if config.use_hybrid_augmentation:
logger.info(f"Augmentation parameters - sigma: {config.sigma}, alpha: {config.alpha}, gamma: {config.gamma}")
trainer = BertTrainer(config)
test_metrics = trainer.train_and_evaluate(train_df, dev_df, test_df, os.path.join(config.out_dir, "output"))
final_infos = {
"sentiment": {
"means": {
"best_acc": test_metrics['accuracy'],
"best_f1": test_metrics['f1'],
"best_auc": test_metrics['auc']
}
}
}
with open(os.path.join(config.out_dir, "final_info.json"), "w") as f:
json.dump(final_infos, f, indent=2)
logger.info(f"Training completed successfully. Results saved to {config.out_dir}")
except Exception as e:
logger.error(f"Program failed: {e}")
raise
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--out_dir", type=str, default="./run_1")
parser.add_argument("--data_path", type=str, default="./datasets/SST-2/")
args = parser.parse_args()
try:
main(args)
except Exception as e:
print("Original error in subprocess:", flush=True)
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
raise
|