File size: 19,150 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import pickle
import os
import copy
import numpy as np
from skimage import io
import torch
import SharedArray
import torch.distributed as dist
from ...ops.iou3d_nms import iou3d_nms_utils
from ...utils import box_utils, common_utils
class DataBaseSampler(object):
def __init__(self, root_path, sampler_cfg, class_names, logger=None):
self.root_path = root_path
self.class_names = class_names
self.sampler_cfg = sampler_cfg
self.img_aug_type = sampler_cfg.get('IMG_AUG_TYPE', None)
self.img_aug_iou_thresh = sampler_cfg.get('IMG_AUG_IOU_THRESH', 0.5)
self.logger = logger
self.db_infos = {}
for class_name in class_names:
self.db_infos[class_name] = []
self.use_shared_memory = sampler_cfg.get('USE_SHARED_MEMORY', False)
for db_info_path in sampler_cfg.DB_INFO_PATH:
db_info_path = self.root_path.resolve() / db_info_path
if not db_info_path.exists():
assert len(sampler_cfg.DB_INFO_PATH) == 1
sampler_cfg.DB_INFO_PATH[0] = sampler_cfg.BACKUP_DB_INFO['DB_INFO_PATH']
sampler_cfg.DB_DATA_PATH[0] = sampler_cfg.BACKUP_DB_INFO['DB_DATA_PATH']
db_info_path = self.root_path.resolve() / sampler_cfg.DB_INFO_PATH[0]
sampler_cfg.NUM_POINT_FEATURES = sampler_cfg.BACKUP_DB_INFO['NUM_POINT_FEATURES']
with open(str(db_info_path), 'rb') as f:
infos = pickle.load(f)
[self.db_infos[cur_class].extend(infos[cur_class]) for cur_class in class_names]
for func_name, val in sampler_cfg.PREPARE.items():
self.db_infos = getattr(self, func_name)(self.db_infos, val)
self.gt_database_data_key = self.load_db_to_shared_memory() if self.use_shared_memory else None
self.sample_groups = {}
self.sample_class_num = {}
self.limit_whole_scene = sampler_cfg.get('LIMIT_WHOLE_SCENE', False)
for x in sampler_cfg.SAMPLE_GROUPS:
class_name, sample_num = x.split(':')
if class_name not in class_names:
continue
self.sample_class_num[class_name] = sample_num
self.sample_groups[class_name] = {
'sample_num': sample_num,
'pointer': len(self.db_infos[class_name]),
'indices': np.arange(len(self.db_infos[class_name]))
}
def __getstate__(self):
d = dict(self.__dict__)
del d['logger']
return d
def __setstate__(self, d):
self.__dict__.update(d)
def __del__(self):
if self.use_shared_memory:
self.logger.info('Deleting GT database from shared memory')
cur_rank, num_gpus = common_utils.get_dist_info()
sa_key = self.sampler_cfg.DB_DATA_PATH[0]
if cur_rank % num_gpus == 0 and os.path.exists(f"/dev/shm/{sa_key}"):
SharedArray.delete(f"shm://{sa_key}")
if num_gpus > 1:
dist.barrier()
self.logger.info('GT database has been removed from shared memory')
def load_db_to_shared_memory(self):
self.logger.info('Loading GT database to shared memory')
cur_rank, world_size, num_gpus = common_utils.get_dist_info(return_gpu_per_machine=True)
assert self.sampler_cfg.DB_DATA_PATH.__len__() == 1, 'Current only support single DB_DATA'
db_data_path = self.root_path.resolve() / self.sampler_cfg.DB_DATA_PATH[0]
sa_key = self.sampler_cfg.DB_DATA_PATH[0]
if cur_rank % num_gpus == 0 and not os.path.exists(f"/dev/shm/{sa_key}"):
gt_database_data = np.load(db_data_path)
common_utils.sa_create(f"shm://{sa_key}", gt_database_data)
if num_gpus > 1:
dist.barrier()
self.logger.info('GT database has been saved to shared memory')
return sa_key
def filter_by_difficulty(self, db_infos, removed_difficulty):
new_db_infos = {}
for key, dinfos in db_infos.items():
pre_len = len(dinfos)
new_db_infos[key] = [
info for info in dinfos
if info['difficulty'] not in removed_difficulty
]
if self.logger is not None:
self.logger.info('Database filter by difficulty %s: %d => %d' % (key, pre_len, len(new_db_infos[key])))
return new_db_infos
def filter_by_min_points(self, db_infos, min_gt_points_list):
for name_num in min_gt_points_list:
name, min_num = name_num.split(':')
min_num = int(min_num)
if min_num > 0 and name in db_infos.keys():
filtered_infos = []
for info in db_infos[name]:
if info['num_points_in_gt'] >= min_num:
filtered_infos.append(info)
if self.logger is not None:
self.logger.info('Database filter by min points %s: %d => %d' %
(name, len(db_infos[name]), len(filtered_infos)))
db_infos[name] = filtered_infos
return db_infos
def sample_with_fixed_number(self, class_name, sample_group):
"""
Args:
class_name:
sample_group:
Returns:
"""
sample_num, pointer, indices = int(sample_group['sample_num']), sample_group['pointer'], sample_group['indices']
if pointer >= len(self.db_infos[class_name]):
indices = np.random.permutation(len(self.db_infos[class_name]))
pointer = 0
sampled_dict = [self.db_infos[class_name][idx] for idx in indices[pointer: pointer + sample_num]]
pointer += sample_num
sample_group['pointer'] = pointer
sample_group['indices'] = indices
return sampled_dict
@staticmethod
def put_boxes_on_road_planes(gt_boxes, road_planes, calib):
"""
Only validate in KITTIDataset
Args:
gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
road_planes: [a, b, c, d]
calib:
Returns:
"""
a, b, c, d = road_planes
center_cam = calib.lidar_to_rect(gt_boxes[:, 0:3])
cur_height_cam = (-d - a * center_cam[:, 0] - c * center_cam[:, 2]) / b
center_cam[:, 1] = cur_height_cam
cur_lidar_height = calib.rect_to_lidar(center_cam)[:, 2]
mv_height = gt_boxes[:, 2] - gt_boxes[:, 5] / 2 - cur_lidar_height
gt_boxes[:, 2] -= mv_height # lidar view
return gt_boxes, mv_height
def copy_paste_to_image_kitti(self, data_dict, crop_feat, gt_number, point_idxes=None):
kitti_img_aug_type = 'by_depth'
kitti_img_aug_use_type = 'annotation'
image = data_dict['images']
boxes3d = data_dict['gt_boxes']
boxes2d = data_dict['gt_boxes2d']
corners_lidar = box_utils.boxes_to_corners_3d(boxes3d)
if 'depth' in kitti_img_aug_type:
paste_order = boxes3d[:,0].argsort()
paste_order = paste_order[::-1]
else:
paste_order = np.arange(len(boxes3d),dtype=np.int)
if 'reverse' in kitti_img_aug_type:
paste_order = paste_order[::-1]
paste_mask = -255 * np.ones(image.shape[:2], dtype=np.int)
fg_mask = np.zeros(image.shape[:2], dtype=np.int)
overlap_mask = np.zeros(image.shape[:2], dtype=np.int)
depth_mask = np.zeros((*image.shape[:2], 2), dtype=np.float)
points_2d, depth_2d = data_dict['calib'].lidar_to_img(data_dict['points'][:,:3])
points_2d[:,0] = np.clip(points_2d[:,0], a_min=0, a_max=image.shape[1]-1)
points_2d[:,1] = np.clip(points_2d[:,1], a_min=0, a_max=image.shape[0]-1)
points_2d = points_2d.astype(np.int)
for _order in paste_order:
_box2d = boxes2d[_order]
image[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = crop_feat[_order]
overlap_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] += \
(paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] > 0).astype(np.int)
paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = _order
if 'cover' in kitti_img_aug_use_type:
# HxWx2 for min and max depth of each box region
depth_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2],0] = corners_lidar[_order,:,0].min()
depth_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2],1] = corners_lidar[_order,:,0].max()
# foreground area of original point cloud in image plane
if _order < gt_number:
fg_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = 1
data_dict['images'] = image
# if not self.joint_sample:
# return data_dict
new_mask = paste_mask[points_2d[:,1], points_2d[:,0]]==(point_idxes+gt_number)
if False: # self.keep_raw:
raw_mask = (point_idxes == -1)
else:
raw_fg = (fg_mask == 1) & (paste_mask >= 0) & (paste_mask < gt_number)
raw_bg = (fg_mask == 0) & (paste_mask < 0)
raw_mask = raw_fg[points_2d[:,1], points_2d[:,0]] | raw_bg[points_2d[:,1], points_2d[:,0]]
keep_mask = new_mask | raw_mask
data_dict['points_2d'] = points_2d
if 'annotation' in kitti_img_aug_use_type:
data_dict['points'] = data_dict['points'][keep_mask]
data_dict['points_2d'] = data_dict['points_2d'][keep_mask]
elif 'projection' in kitti_img_aug_use_type:
overlap_mask[overlap_mask>=1] = 1
data_dict['overlap_mask'] = overlap_mask
if 'cover' in kitti_img_aug_use_type:
data_dict['depth_mask'] = depth_mask
return data_dict
def sample_gt_boxes_2d(self, data_dict, sampled_boxes, valid_mask):
mv_height = None
if self.img_aug_type == 'kitti':
sampled_boxes2d, mv_height, ret_valid_mask = self.sample_gt_boxes_2d_kitti(data_dict, sampled_boxes, valid_mask)
else:
raise NotImplementedError
return sampled_boxes2d, mv_height, ret_valid_mask
def initilize_image_aug_dict(self, data_dict, gt_boxes_mask):
img_aug_gt_dict = None
if self.img_aug_type is None:
pass
elif self.img_aug_type == 'kitti':
obj_index_list, crop_boxes2d = [], []
gt_number = gt_boxes_mask.sum().astype(np.int)
gt_boxes2d = data_dict['gt_boxes2d'][gt_boxes_mask].astype(np.int)
gt_crops2d = [data_dict['images'][_x[1]:_x[3],_x[0]:_x[2]] for _x in gt_boxes2d]
img_aug_gt_dict = {
'obj_index_list': obj_index_list,
'gt_crops2d': gt_crops2d,
'gt_boxes2d': gt_boxes2d,
'gt_number': gt_number,
'crop_boxes2d': crop_boxes2d
}
else:
raise NotImplementedError
return img_aug_gt_dict
def collect_image_crops(self, img_aug_gt_dict, info, data_dict, obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx):
if self.img_aug_type == 'kitti':
new_box, img_crop2d, obj_points, obj_idx = self.collect_image_crops_kitti(info, data_dict,
obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx)
img_aug_gt_dict['crop_boxes2d'].append(new_box)
img_aug_gt_dict['gt_crops2d'].append(img_crop2d)
img_aug_gt_dict['obj_index_list'].append(obj_idx)
else:
raise NotImplementedError
return img_aug_gt_dict, obj_points
def copy_paste_to_image(self, img_aug_gt_dict, data_dict, points):
if self.img_aug_type == 'kitti':
obj_points_idx = np.concatenate(img_aug_gt_dict['obj_index_list'], axis=0)
point_idxes = -1 * np.ones(len(points), dtype=np.int)
point_idxes[:obj_points_idx.shape[0]] = obj_points_idx
data_dict['gt_boxes2d'] = np.concatenate([img_aug_gt_dict['gt_boxes2d'], np.array(img_aug_gt_dict['crop_boxes2d'])], axis=0)
data_dict = self.copy_paste_to_image_kitti(data_dict, img_aug_gt_dict['gt_crops2d'], img_aug_gt_dict['gt_number'], point_idxes)
if 'road_plane' in data_dict:
data_dict.pop('road_plane')
else:
raise NotImplementedError
return data_dict
def add_sampled_boxes_to_scene(self, data_dict, sampled_gt_boxes, total_valid_sampled_dict, mv_height=None, sampled_gt_boxes2d=None):
gt_boxes_mask = data_dict['gt_boxes_mask']
gt_boxes = data_dict['gt_boxes'][gt_boxes_mask]
gt_names = data_dict['gt_names'][gt_boxes_mask]
points = data_dict['points']
if self.sampler_cfg.get('USE_ROAD_PLANE', False) and mv_height is None:
sampled_gt_boxes, mv_height = self.put_boxes_on_road_planes(
sampled_gt_boxes, data_dict['road_plane'], data_dict['calib']
)
data_dict.pop('calib')
data_dict.pop('road_plane')
obj_points_list = []
# convert sampled 3D boxes to image plane
img_aug_gt_dict = self.initilize_image_aug_dict(data_dict, gt_boxes_mask)
if self.use_shared_memory:
gt_database_data = SharedArray.attach(f"shm://{self.gt_database_data_key}")
gt_database_data.setflags(write=0)
else:
gt_database_data = None
for idx, info in enumerate(total_valid_sampled_dict):
if self.use_shared_memory:
start_offset, end_offset = info['global_data_offset']
obj_points = copy.deepcopy(gt_database_data[start_offset:end_offset])
else:
file_path = self.root_path / info['path']
obj_points = np.fromfile(str(file_path), dtype=np.float32).reshape(
[-1, self.sampler_cfg.NUM_POINT_FEATURES])
if obj_points.shape[0] != info['num_points_in_gt']:
obj_points = np.fromfile(str(file_path), dtype=np.float64).reshape(-1, self.sampler_cfg.NUM_POINT_FEATURES)
assert obj_points.shape[0] == info['num_points_in_gt']
obj_points[:, :3] += info['box3d_lidar'][:3].astype(np.float32)
if self.sampler_cfg.get('USE_ROAD_PLANE', False):
# mv height
obj_points[:, 2] -= mv_height[idx]
if self.img_aug_type is not None:
img_aug_gt_dict, obj_points = self.collect_image_crops(
img_aug_gt_dict, info, data_dict, obj_points, sampled_gt_boxes, sampled_gt_boxes2d, idx
)
obj_points_list.append(obj_points)
obj_points = np.concatenate(obj_points_list, axis=0)
sampled_gt_names = np.array([x['name'] for x in total_valid_sampled_dict])
if self.sampler_cfg.get('FILTER_OBJ_POINTS_BY_TIMESTAMP', False) or obj_points.shape[-1] != points.shape[-1]:
if self.sampler_cfg.get('FILTER_OBJ_POINTS_BY_TIMESTAMP', False):
min_time = min(self.sampler_cfg.TIME_RANGE[0], self.sampler_cfg.TIME_RANGE[1])
max_time = max(self.sampler_cfg.TIME_RANGE[0], self.sampler_cfg.TIME_RANGE[1])
else:
assert obj_points.shape[-1] == points.shape[-1] + 1
# transform multi-frame GT points to single-frame GT points
min_time = max_time = 0.0
time_mask = np.logical_and(obj_points[:, -1] < max_time + 1e-6, obj_points[:, -1] > min_time - 1e-6)
obj_points = obj_points[time_mask]
large_sampled_gt_boxes = box_utils.enlarge_box3d(
sampled_gt_boxes[:, 0:7], extra_width=self.sampler_cfg.REMOVE_EXTRA_WIDTH
)
points = box_utils.remove_points_in_boxes3d(points, large_sampled_gt_boxes)
points = np.concatenate([obj_points[:, :points.shape[-1]], points], axis=0)
gt_names = np.concatenate([gt_names, sampled_gt_names], axis=0)
gt_boxes = np.concatenate([gt_boxes, sampled_gt_boxes], axis=0)
data_dict['gt_boxes'] = gt_boxes
data_dict['gt_names'] = gt_names
data_dict['points'] = points
if self.img_aug_type is not None:
data_dict = self.copy_paste_to_image(img_aug_gt_dict, data_dict, points)
return data_dict
def __call__(self, data_dict):
"""
Args:
data_dict:
gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
Returns:
"""
gt_boxes = data_dict['gt_boxes']
gt_names = data_dict['gt_names'].astype(str)
existed_boxes = gt_boxes
total_valid_sampled_dict = []
sampled_mv_height = []
sampled_gt_boxes2d = []
for class_name, sample_group in self.sample_groups.items():
if self.limit_whole_scene:
num_gt = np.sum(class_name == gt_names)
sample_group['sample_num'] = str(int(self.sample_class_num[class_name]) - num_gt)
if int(sample_group['sample_num']) > 0:
sampled_dict = self.sample_with_fixed_number(class_name, sample_group)
sampled_boxes = np.stack([x['box3d_lidar'] for x in sampled_dict], axis=0).astype(np.float32)
assert not self.sampler_cfg.get('DATABASE_WITH_FAKELIDAR', False), 'Please use latest codes to generate GT_DATABASE'
iou1 = iou3d_nms_utils.boxes_bev_iou_cpu(sampled_boxes[:, 0:7], existed_boxes[:, 0:7])
iou2 = iou3d_nms_utils.boxes_bev_iou_cpu(sampled_boxes[:, 0:7], sampled_boxes[:, 0:7])
iou2[range(sampled_boxes.shape[0]), range(sampled_boxes.shape[0])] = 0
iou1 = iou1 if iou1.shape[1] > 0 else iou2
valid_mask = ((iou1.max(axis=1) + iou2.max(axis=1)) == 0)
if self.img_aug_type is not None:
sampled_boxes2d, mv_height, valid_mask = self.sample_gt_boxes_2d(data_dict, sampled_boxes, valid_mask)
sampled_gt_boxes2d.append(sampled_boxes2d)
if mv_height is not None:
sampled_mv_height.append(mv_height)
valid_mask = valid_mask.nonzero()[0]
valid_sampled_dict = [sampled_dict[x] for x in valid_mask]
valid_sampled_boxes = sampled_boxes[valid_mask]
existed_boxes = np.concatenate((existed_boxes, valid_sampled_boxes[:, :existed_boxes.shape[-1]]), axis=0)
total_valid_sampled_dict.extend(valid_sampled_dict)
sampled_gt_boxes = existed_boxes[gt_boxes.shape[0]:, :]
if total_valid_sampled_dict.__len__() > 0:
sampled_gt_boxes2d = np.concatenate(sampled_gt_boxes2d, axis=0) if len(sampled_gt_boxes2d) > 0 else None
sampled_mv_height = np.concatenate(sampled_mv_height, axis=0) if len(sampled_mv_height) > 0 else None
data_dict = self.add_sampled_boxes_to_scene(
data_dict, sampled_gt_boxes, total_valid_sampled_dict, sampled_mv_height, sampled_gt_boxes2d
)
data_dict.pop('gt_boxes_mask')
return data_dict
|