File size: 17,847 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import copy
import pickle
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from pathlib import Path
from ..dataset import DatasetTemplate
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
from ...utils import box_utils
from .once_toolkits import Octopus
class ONCEDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
"""
Args:
root_path:
dataset_cfg:
class_names:
training:
logger:
"""
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.split = dataset_cfg.DATA_SPLIT['train'] if training else dataset_cfg.DATA_SPLIT['test']
assert self.split in ['train', 'val', 'test', 'raw_small', 'raw_medium', 'raw_large']
split_dir = self.root_path / 'ImageSets' / (self.split + '.txt')
self.sample_seq_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None
self.cam_names = ['cam01', 'cam03', 'cam05', 'cam06', 'cam07', 'cam08', 'cam09']
self.cam_tags = ['top', 'top2', 'left_back', 'left_front', 'right_front', 'right_back', 'back']
self.toolkits = Octopus(self.root_path)
self.once_infos = []
self.include_once_data(self.split)
def include_once_data(self, split):
if self.logger is not None:
self.logger.info('Loading ONCE dataset')
once_infos = []
for info_path in self.dataset_cfg.INFO_PATH[split]:
info_path = self.root_path / info_path
if not info_path.exists():
continue
with open(info_path, 'rb') as f:
infos = pickle.load(f)
once_infos.extend(infos)
def check_annos(info):
return 'annos' in info
if self.split != 'raw':
once_infos = list(filter(check_annos,once_infos))
self.once_infos.extend(once_infos)
if self.logger is not None:
self.logger.info('Total samples for ONCE dataset: %d' % (len(once_infos)))
def set_split(self, split):
super().__init__(
dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger
)
self.split = split
split_dir = self.root_path / 'ImageSets' / (self.split + '.txt')
self.sample_seq_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None
def get_lidar(self, sequence_id, frame_id):
return self.toolkits.load_point_cloud(sequence_id, frame_id)
def get_image(self, sequence_id, frame_id, cam_name):
return self.toolkits.load_image(sequence_id, frame_id, cam_name)
def project_lidar_to_image(self, sequence_id, frame_id):
return self.toolkits.project_lidar_to_image(sequence_id, frame_id)
def point_painting(self, points, info):
semseg_dir = './' # add your own seg directory
used_classes = [0,1,2,3,4,5]
num_classes = len(used_classes)
frame_id = str(info['frame_id'])
seq_id = str(info['sequence_id'])
painted = np.zeros((points.shape[0], num_classes)) # classes + bg
for cam_name in self.cam_names:
img_path = Path(semseg_dir) / Path(seq_id) / Path(cam_name) / Path(frame_id+'_label.png')
calib_info = info['calib'][cam_name]
cam_2_velo = calib_info['cam_to_velo']
cam_intri = np.hstack([calib_info['cam_intrinsic'], np.zeros((3, 1), dtype=np.float32)])
point_xyz = points[:, :3]
points_homo = np.hstack(
[point_xyz, np.ones(point_xyz.shape[0], dtype=np.float32).reshape((-1, 1))])
points_lidar = np.dot(points_homo, np.linalg.inv(cam_2_velo).T)
mask = points_lidar[:, 2] > 0
points_lidar = points_lidar[mask]
points_img = np.dot(points_lidar, cam_intri.T)
points_img = points_img / points_img[:, [2]]
uv = points_img[:, [0,1]]
#depth = points_img[:, [2]]
seg_map = np.array(Image.open(img_path)) # (H, W)
H, W = seg_map.shape
seg_feats = np.zeros((H*W, num_classes))
seg_map = seg_map.reshape(-1)
for cls_i in used_classes:
seg_feats[seg_map==cls_i, cls_i] = 1
seg_feats = seg_feats.reshape(H, W, num_classes).transpose(2, 0, 1)
uv[:, 0] = (uv[:, 0] - W / 2) / (W / 2)
uv[:, 1] = (uv[:, 1] - H / 2) / (H / 2)
uv_tensor = torch.from_numpy(uv).unsqueeze(0).unsqueeze(0) # [1,1,N,2]
seg_feats = torch.from_numpy(seg_feats).unsqueeze(0) # [1,C,H,W]
proj_scores = F.grid_sample(seg_feats, uv_tensor, mode='bilinear', padding_mode='zeros') # [1, C, 1, N]
proj_scores = proj_scores.squeeze(0).squeeze(1).transpose(0, 1).contiguous() # [N, C]
painted[mask] = proj_scores.numpy()
return np.concatenate([points, painted], axis=1)
def __len__(self):
if self._merge_all_iters_to_one_epoch:
return len(self.once_infos) * self.total_epochs
return len(self.once_infos)
def __getitem__(self, index):
if self._merge_all_iters_to_one_epoch:
index = index % len(self.once_infos)
info = copy.deepcopy(self.once_infos[index])
frame_id = info['frame_id']
seq_id = info['sequence_id']
points = self.get_lidar(seq_id, frame_id)
if self.dataset_cfg.get('POINT_PAINTING', False):
points = self.point_painting(points, info)
input_dict = {
'points': points,
'frame_id': frame_id,
}
if 'annos' in info:
annos = info['annos']
input_dict.update({
'gt_names': annos['name'],
'gt_boxes': annos['boxes_3d'],
'num_points_in_gt': annos.get('num_points_in_gt', None)
})
data_dict = self.prepare_data(data_dict=input_dict)
data_dict.pop('num_points_in_gt', None)
return data_dict
def get_infos(self, num_workers=4, sample_seq_list=None):
import concurrent.futures as futures
import json
root_path = self.root_path
cam_names = self.cam_names
"""
# dataset json format
{
'meta_info':
'calib': {
'cam01': {
'cam_to_velo': list
'cam_intrinsic': list
'distortion': list
}
...
}
'frames': [
{
'frame_id': timestamp,
'annos': {
'names': list
'boxes_3d': list of list
'boxes_2d': {
'cam01': list of list
...
}
}
'pose': list
},
...
]
}
# open pcdet format
{
'meta_info':
'sequence_id': seq_idx
'frame_id': timestamp
'timestamp': timestamp
'lidar': path
'cam01': path
...
'calib': {
'cam01': {
'cam_to_velo': np.array
'cam_intrinsic': np.array
'distortion': np.array
}
...
}
'pose': np.array
'annos': {
'name': np.array
'boxes_3d': np.array
'boxes_2d': {
'cam01': np.array
....
}
}
}
"""
def process_single_sequence(seq_idx):
print('%s seq_idx: %s' % (self.split, seq_idx))
seq_infos = []
seq_path = Path(root_path) / 'data' / seq_idx
json_path = seq_path / ('%s.json' % seq_idx)
with open(json_path, 'r') as f:
info_this_seq = json.load(f)
meta_info = info_this_seq['meta_info']
calib = info_this_seq['calib']
for f_idx, frame in enumerate(info_this_seq['frames']):
frame_id = frame['frame_id']
if f_idx == 0:
prev_id = None
else:
prev_id = info_this_seq['frames'][f_idx-1]['frame_id']
if f_idx == len(info_this_seq['frames'])-1:
next_id = None
else:
next_id = info_this_seq['frames'][f_idx+1]['frame_id']
pc_path = str(seq_path / 'lidar_roof' / ('%s.bin' % frame_id))
pose = np.array(frame['pose'])
frame_dict = {
'sequence_id': seq_idx,
'frame_id': frame_id,
'timestamp': int(frame_id),
'prev_id': prev_id,
'next_id': next_id,
'meta_info': meta_info,
'lidar': pc_path,
'pose': pose
}
calib_dict = {}
for cam_name in cam_names:
cam_path = str(seq_path / cam_name / ('%s.jpg' % frame_id))
frame_dict.update({cam_name: cam_path})
calib_dict[cam_name] = {}
calib_dict[cam_name]['cam_to_velo'] = np.array(calib[cam_name]['cam_to_velo'])
calib_dict[cam_name]['cam_intrinsic'] = np.array(calib[cam_name]['cam_intrinsic'])
calib_dict[cam_name]['distortion'] = np.array(calib[cam_name]['distortion'])
frame_dict.update({'calib': calib_dict})
if 'annos' in frame:
annos = frame['annos']
boxes_3d = np.array(annos['boxes_3d'])
if boxes_3d.shape[0] == 0:
print(frame_id)
continue
boxes_2d_dict = {}
for cam_name in cam_names:
boxes_2d_dict[cam_name] = np.array(annos['boxes_2d'][cam_name])
annos_dict = {
'name': np.array(annos['names']),
'boxes_3d': boxes_3d,
'boxes_2d': boxes_2d_dict
}
points = self.get_lidar(seq_idx, frame_id)
corners_lidar = box_utils.boxes_to_corners_3d(np.array(annos['boxes_3d']))
num_gt = boxes_3d.shape[0]
num_points_in_gt = -np.ones(num_gt, dtype=np.int32)
for k in range(num_gt):
flag = box_utils.in_hull(points[:, 0:3], corners_lidar[k])
num_points_in_gt[k] = flag.sum()
annos_dict['num_points_in_gt'] = num_points_in_gt
frame_dict.update({'annos': annos_dict})
seq_infos.append(frame_dict)
return seq_infos
sample_seq_list = sample_seq_list if sample_seq_list is not None else self.sample_seq_list
with futures.ThreadPoolExecutor(num_workers) as executor:
infos = executor.map(process_single_sequence, sample_seq_list)
all_infos = []
for info in infos:
all_infos.extend(info)
return all_infos
def create_groundtruth_database(self, info_path=None, used_classes=None, split='train'):
import torch
database_save_path = Path(self.root_path) / ('gt_database' if split == 'train' else ('gt_database_%s' % split))
db_info_save_path = Path(self.root_path) / ('once_dbinfos_%s.pkl' % split)
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
with open(info_path, 'rb') as f:
infos = pickle.load(f)
for k in range(len(infos)):
if 'annos' not in infos[k]:
continue
print('gt_database sample: %d' % (k + 1))
info = infos[k]
frame_id = info['frame_id']
seq_id = info['sequence_id']
points = self.get_lidar(seq_id, frame_id)
annos = info['annos']
names = annos['name']
gt_boxes = annos['boxes_3d']
num_obj = gt_boxes.shape[0]
point_indices = roiaware_pool3d_utils.points_in_boxes_cpu(
torch.from_numpy(points[:, 0:3]), torch.from_numpy(gt_boxes)
).numpy() # (nboxes, npoints)
for i in range(num_obj):
filename = '%s_%s_%d.bin' % (frame_id, names[i], i)
filepath = database_save_path / filename
gt_points = points[point_indices[i] > 0]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
db_info = {'name': names[i], 'path': db_path, 'gt_idx': i,
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0]}
if names[i] in all_db_infos:
all_db_infos[names[i]].append(db_info)
else:
all_db_infos[names[i]] = [db_info]
for k, v in all_db_infos.items():
print('Database %s: %d' % (k, len(v)))
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
@staticmethod
def generate_prediction_dicts(batch_dict, pred_dicts, class_names, output_path=None):
def get_template_prediction(num_samples):
ret_dict = {
'name': np.zeros(num_samples), 'score': np.zeros(num_samples),
'boxes_3d': np.zeros((num_samples, 7))
}
return ret_dict
def generate_single_sample_dict(box_dict):
pred_scores = box_dict['pred_scores'].cpu().numpy()
pred_boxes = box_dict['pred_boxes'].cpu().numpy()
pred_labels = box_dict['pred_labels'].cpu().numpy()
pred_dict = get_template_prediction(pred_scores.shape[0])
if pred_scores.shape[0] == 0:
return pred_dict
pred_dict['name'] = np.array(class_names)[pred_labels - 1]
pred_dict['score'] = pred_scores
pred_dict['boxes_3d'] = pred_boxes
return pred_dict
annos = []
for index, box_dict in enumerate(pred_dicts):
frame_id = batch_dict['frame_id'][index]
single_pred_dict = generate_single_sample_dict(box_dict)
single_pred_dict['frame_id'] = frame_id
annos.append(single_pred_dict)
if output_path is not None:
raise NotImplementedError
return annos
def evaluation(self, det_annos, class_names, **kwargs):
from .once_eval.evaluation import get_evaluation_results
eval_det_annos = copy.deepcopy(det_annos)
eval_gt_annos = [copy.deepcopy(info['annos']) for info in self.once_infos]
ap_result_str, ap_dict = get_evaluation_results(eval_gt_annos, eval_det_annos, class_names)
return ap_result_str, ap_dict
def create_once_infos(dataset_cfg, class_names, data_path, save_path, workers=4):
dataset = ONCEDataset(dataset_cfg=dataset_cfg, class_names=class_names, root_path=data_path, training=False)
splits = ['train', 'val', 'test', 'raw_small', 'raw_medium', 'raw_large']
ignore = ['test']
print('---------------Start to generate data infos---------------')
for split in splits:
if split in ignore:
continue
filename = 'once_infos_%s.pkl' % split
filename = save_path / Path(filename)
dataset.set_split(split)
once_infos = dataset.get_infos(num_workers=workers)
with open(filename, 'wb') as f:
pickle.dump(once_infos, f)
print('ONCE info %s file is saved to %s' % (split, filename))
train_filename = save_path / 'once_infos_train.pkl'
print('---------------Start create groundtruth database for data augmentation---------------')
dataset.set_split('train')
dataset.create_groundtruth_database(train_filename, split='train')
print('---------------Data preparation Done---------------')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config of dataset')
parser.add_argument('--func', type=str, default='create_waymo_infos', help='')
parser.add_argument('--runs_on', type=str, default='server', help='')
args = parser.parse_args()
if args.func == 'create_once_infos':
import yaml
from pathlib import Path
from easydict import EasyDict
dataset_cfg = EasyDict(yaml.load(open(args.cfg_file)))
ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve()
once_data_path = ROOT_DIR / 'data' / 'once'
once_save_path = ROOT_DIR / 'data' / 'once'
if args.runs_on == 'cloud':
once_data_path = Path('/cache/once/')
once_save_path = Path('/cache/once/')
dataset_cfg.DATA_PATH = dataset_cfg.CLOUD_DATA_PATH
create_once_infos(
dataset_cfg=dataset_cfg,
class_names=['Car', 'Bus', 'Truck', 'Pedestrian', 'Bicycle'],
data_path=once_data_path,
save_path=once_save_path
) |