File size: 14,764 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# This file is modified from https://github.com/tianweiy/CenterPoint
import torch
import torch.nn.functional as F
import numpy as np
import numba
def gaussian_radius(height, width, min_overlap=0.5):
"""
Args:
height: (N)
width: (N)
min_overlap:
Returns:
"""
a1 = 1
b1 = (height + width)
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
sq1 = (b1 ** 2 - 4 * a1 * c1).sqrt()
r1 = (b1 + sq1) / 2
a2 = 4
b2 = 2 * (height + width)
c2 = (1 - min_overlap) * width * height
sq2 = (b2 ** 2 - 4 * a2 * c2).sqrt()
r2 = (b2 + sq2) / 2
a3 = 4 * min_overlap
b3 = -2 * min_overlap * (height + width)
c3 = (min_overlap - 1) * width * height
sq3 = (b3 ** 2 - 4 * a3 * c3).sqrt()
r3 = (b3 + sq3) / 2
ret = torch.min(torch.min(r1, r2), r3)
return ret
def gaussian2D(shape, sigma=1):
m, n = [(ss - 1.) / 2. for ss in shape]
y, x = np.ogrid[-m:m + 1, -n:n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
return h
def draw_gaussian_to_heatmap(heatmap, center, radius, k=1, valid_mask=None):
diameter = 2 * radius + 1
gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6)
x, y = int(center[0]), int(center[1])
height, width = heatmap.shape[0:2]
left, right = min(x, radius), min(width - x, radius + 1)
top, bottom = min(y, radius), min(height - y, radius + 1)
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
masked_gaussian = torch.from_numpy(
gaussian[radius - top:radius + bottom, radius - left:radius + right]
).to(heatmap.device).float()
if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: # TODO debug
if valid_mask is not None:
cur_valid_mask = valid_mask[y - top:y + bottom, x - left:x + right]
masked_gaussian = masked_gaussian * cur_valid_mask.float()
torch.max(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
return heatmap
def _nms(heat, kernel=3):
pad = (kernel - 1) // 2
hmax = F.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad)
keep = (hmax == heat).float()
return heat * keep
def gaussian3D(shape, sigma=1):
m, n = [(ss - 1.) / 2. for ss in shape]
y, x = np.ogrid[-m:m + 1, -n:n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
return h
def draw_gaussian_to_heatmap_voxels(heatmap, distances, radius, k=1):
diameter = 2 * radius + 1
sigma = diameter / 6
masked_gaussian = torch.exp(- distances / (2 * sigma * sigma))
torch.max(heatmap, masked_gaussian, out=heatmap)
return heatmap
@numba.jit(nopython=True)
def circle_nms(dets, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
scores = dets[:, 2]
order = scores.argsort()[::-1].astype(np.int32) # highest->lowest
ndets = dets.shape[0]
suppressed = np.zeros((ndets), dtype=np.int32)
keep = []
for _i in range(ndets):
i = order[_i] # start with highest score box
if suppressed[i] == 1: # if any box have enough iou with this, remove it
continue
keep.append(i)
for _j in range(_i + 1, ndets):
j = order[_j]
if suppressed[j] == 1:
continue
# calculate center distance between i and j box
dist = (x1[i] - x1[j]) ** 2 + (y1[i] - y1[j]) ** 2
# ovr = inter / areas[j]
if dist <= thresh:
suppressed[j] = 1
return keep
def _circle_nms(boxes, min_radius, post_max_size=83):
"""
NMS according to center distance
"""
keep = np.array(circle_nms(boxes.cpu().numpy(), thresh=min_radius))[:post_max_size]
keep = torch.from_numpy(keep).long().to(boxes.device)
return keep
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _transpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
def _topk(scores, K=40):
batch, num_class, height, width = scores.size()
topk_scores, topk_inds = torch.topk(scores.flatten(2, 3), K)
topk_inds = topk_inds % (height * width)
topk_ys = (topk_inds // width).float()
topk_xs = (topk_inds % width).int().float()
topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K)
topk_classes = (topk_ind // K).int()
topk_inds = _gather_feat(topk_inds.view(batch, -1, 1), topk_ind).view(batch, K)
topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K)
topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K)
return topk_score, topk_inds, topk_classes, topk_ys, topk_xs
def decode_bbox_from_heatmap(heatmap, rot_cos, rot_sin, center, center_z, dim,
point_cloud_range=None, voxel_size=None, feature_map_stride=None, vel=None, iou=None, K=100,
circle_nms=False, score_thresh=None, post_center_limit_range=None):
batch_size, num_class, _, _ = heatmap.size()
if circle_nms:
# TODO: not checked yet
assert False, 'not checked yet'
heatmap = _nms(heatmap)
scores, inds, class_ids, ys, xs = _topk(heatmap, K=K)
center = _transpose_and_gather_feat(center, inds).view(batch_size, K, 2)
rot_sin = _transpose_and_gather_feat(rot_sin, inds).view(batch_size, K, 1)
rot_cos = _transpose_and_gather_feat(rot_cos, inds).view(batch_size, K, 1)
center_z = _transpose_and_gather_feat(center_z, inds).view(batch_size, K, 1)
dim = _transpose_and_gather_feat(dim, inds).view(batch_size, K, 3)
angle = torch.atan2(rot_sin, rot_cos)
xs = xs.view(batch_size, K, 1) + center[:, :, 0:1]
ys = ys.view(batch_size, K, 1) + center[:, :, 1:2]
xs = xs * feature_map_stride * voxel_size[0] + point_cloud_range[0]
ys = ys * feature_map_stride * voxel_size[1] + point_cloud_range[1]
box_part_list = [xs, ys, center_z, dim, angle]
if vel is not None:
vel = _transpose_and_gather_feat(vel, inds).view(batch_size, K, 2)
box_part_list.append(vel)
if iou is not None:
iou = _transpose_and_gather_feat(iou, inds).view(batch_size, K)
final_box_preds = torch.cat((box_part_list), dim=-1)
final_scores = scores.view(batch_size, K)
final_class_ids = class_ids.view(batch_size, K)
assert post_center_limit_range is not None
mask = (final_box_preds[..., :3] >= post_center_limit_range[:3]).all(2)
mask &= (final_box_preds[..., :3] <= post_center_limit_range[3:]).all(2)
if score_thresh is not None:
mask &= (final_scores > score_thresh)
ret_pred_dicts = []
for k in range(batch_size):
cur_mask = mask[k]
cur_boxes = final_box_preds[k, cur_mask]
cur_scores = final_scores[k, cur_mask]
cur_labels = final_class_ids[k, cur_mask]
if circle_nms:
assert False, 'not checked yet'
centers = cur_boxes[:, [0, 1]]
boxes = torch.cat((centers, scores.view(-1, 1)), dim=1)
keep = _circle_nms(boxes, min_radius=min_radius, post_max_size=nms_post_max_size)
cur_boxes = cur_boxes[keep]
cur_scores = cur_scores[keep]
cur_labels = cur_labels[keep]
ret_pred_dicts.append({
'pred_boxes': cur_boxes,
'pred_scores': cur_scores,
'pred_labels': cur_labels
})
if iou is not None:
ret_pred_dicts[-1]['pred_iou'] = iou[k, cur_mask]
return ret_pred_dicts
def _topk_1d(scores, batch_size, batch_idx, obj, K=40, nuscenes=False):
# scores: (N, num_classes)
topk_score_list = []
topk_inds_list = []
topk_classes_list = []
for bs_idx in range(batch_size):
batch_inds = batch_idx==bs_idx
if obj.shape[-1] == 1 and not nuscenes:
score = scores[batch_inds].permute(1, 0)
topk_scores, topk_inds = torch.topk(score, K)
topk_score, topk_ind = torch.topk(obj[topk_inds.view(-1)].squeeze(-1), K) #torch.topk(topk_scores.view(-1), K)
else:
score = obj[batch_inds].permute(1, 0)
topk_scores, topk_inds = torch.topk(score, min(K, score.shape[-1]))
topk_score, topk_ind = torch.topk(topk_scores.view(-1), min(K, topk_scores.view(-1).shape[-1]))
#topk_score, topk_ind = torch.topk(score.reshape(-1), K)
topk_classes = (topk_ind // K).int()
topk_inds = topk_inds.view(-1).gather(0, topk_ind)
#print('topk_inds', topk_inds)
if not obj is None and obj.shape[-1] == 1:
topk_score_list.append(obj[batch_inds][topk_inds])
else:
topk_score_list.append(topk_score)
topk_inds_list.append(topk_inds)
topk_classes_list.append(topk_classes)
topk_score = torch.stack(topk_score_list)
topk_inds = torch.stack(topk_inds_list)
topk_classes = torch.stack(topk_classes_list)
return topk_score, topk_inds, topk_classes
def gather_feat_idx(feats, inds, batch_size, batch_idx):
feats_list = []
dim = feats.size(-1)
_inds = inds.unsqueeze(-1).expand(inds.size(0), inds.size(1), dim)
for bs_idx in range(batch_size):
batch_inds = batch_idx==bs_idx
feat = feats[batch_inds]
feats_list.append(feat.gather(0, _inds[bs_idx]))
feats = torch.stack(feats_list)
return feats
def decode_bbox_from_voxels_nuscenes(batch_size, indices, obj, rot_cos, rot_sin,
center, center_z, dim, vel=None, iou=None, point_cloud_range=None, voxel_size=None, voxels_3d=None,
feature_map_stride=None, K=100, score_thresh=None, post_center_limit_range=None, add_features=None):
batch_idx = indices[:, 0]
spatial_indices = indices[:, 1:]
scores, inds, class_ids = _topk_1d(None, batch_size, batch_idx, obj, K=K, nuscenes=True)
center = gather_feat_idx(center, inds, batch_size, batch_idx)
rot_sin = gather_feat_idx(rot_sin, inds, batch_size, batch_idx)
rot_cos = gather_feat_idx(rot_cos, inds, batch_size, batch_idx)
center_z = gather_feat_idx(center_z, inds, batch_size, batch_idx)
dim = gather_feat_idx(dim, inds, batch_size, batch_idx)
spatial_indices = gather_feat_idx(spatial_indices, inds, batch_size, batch_idx)
if not add_features is None:
add_features = [gather_feat_idx(add_feature, inds, batch_size, batch_idx) for add_feature in add_features]
if not isinstance(feature_map_stride, int):
feature_map_stride = gather_feat_idx(feature_map_stride.unsqueeze(-1), inds, batch_size, batch_idx)
angle = torch.atan2(rot_sin, rot_cos)
xs = (spatial_indices[:, :, -1:] + center[:, :, 0:1]) * feature_map_stride * voxel_size[0] + point_cloud_range[0]
ys = (spatial_indices[:, :, -2:-1] + center[:, :, 1:2]) * feature_map_stride * voxel_size[1] + point_cloud_range[1]
#zs = (spatial_indices[:, :, 0:1]) * feature_map_stride * voxel_size[2] + point_cloud_range[2] + center_z
box_part_list = [xs, ys, center_z, dim, angle]
if not vel is None:
vel = gather_feat_idx(vel, inds, batch_size, batch_idx)
box_part_list.append(vel)
if not iou is None:
iou = gather_feat_idx(iou, inds, batch_size, batch_idx)
iou = torch.clamp(iou, min=0, max=1.)
final_box_preds = torch.cat((box_part_list), dim=-1)
final_scores = scores.view(batch_size, K)
final_class_ids = class_ids.view(batch_size, K)
if not add_features is None:
add_features = [add_feature.view(batch_size, K, add_feature.shape[-1]) for add_feature in add_features]
assert post_center_limit_range is not None
mask = (final_box_preds[..., :3] >= post_center_limit_range[:3]).all(2)
mask &= (final_box_preds[..., :3] <= post_center_limit_range[3:]).all(2)
if score_thresh is not None:
mask &= (final_scores > score_thresh)
ret_pred_dicts = []
for k in range(batch_size):
cur_mask = mask[k]
cur_boxes = final_box_preds[k, cur_mask]
cur_scores = final_scores[k, cur_mask]
cur_labels = final_class_ids[k, cur_mask]
cur_add_features = [add_feature[k, cur_mask] for add_feature in add_features] if not add_features is None else None
cur_iou = iou[k, cur_mask] if not iou is None else None
ret_pred_dicts.append({
'pred_boxes': cur_boxes,
'pred_scores': cur_scores,
'pred_labels': cur_labels,
'pred_ious': cur_iou,
'add_features': cur_add_features,
})
return ret_pred_dicts
def decode_bbox_from_pred_dicts(pred_dict, point_cloud_range=None, voxel_size=None, feature_map_stride=None):
batch_size, _, H, W = pred_dict['center'].shape
batch_center = pred_dict['center'].permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 2) # (B, H, W, 2)
batch_center_z = pred_dict['center_z'].permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 1) # (B, H, W, 1)
batch_dim = pred_dict['dim'].exp().permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 3) # (B, H, W, 3)
batch_rot_cos = pred_dict['rot'][:, 0].unsqueeze(dim=1).permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 1) # (B, H, W, 1)
batch_rot_sin = pred_dict['rot'][:, 1].unsqueeze(dim=1).permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 1) # (B, H, W, 1)
batch_vel = pred_dict['vel'].permute(0, 2, 3, 1).contiguous().view(batch_size, H*W, 2) if 'vel' in pred_dict.keys() else None
angle = torch.atan2(batch_rot_sin, batch_rot_cos) # (B, H*W, 1)
ys, xs = torch.meshgrid([torch.arange(0, H, device=batch_center.device, dtype=batch_center.dtype),
torch.arange(0, W, device=batch_center.device, dtype=batch_center.dtype)])
ys = ys.view(1, H, W).repeat(batch_size, 1, 1)
xs = xs.view(1, H, W).repeat(batch_size, 1, 1)
xs = xs.view(batch_size, -1, 1) + batch_center[:, :, 0:1]
ys = ys.view(batch_size, -1, 1) + batch_center[:, :, 1:2]
xs = xs * feature_map_stride * voxel_size[0] + point_cloud_range[0]
ys = ys * feature_map_stride * voxel_size[1] + point_cloud_range[1]
box_part_list = [xs, ys, batch_center_z, batch_dim, angle]
if batch_vel is not None:
box_part_list.append(batch_vel)
box_preds = torch.cat((box_part_list), dim=-1).view(batch_size, H, W, -1)
return box_preds
|