File size: 10,535 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# This file is modified from https://github.com/traveller59/second.pytorch

try:
    from collections.abc import Iterable
except:
    from collections import Iterable

import torch
from torch import nn
from torch._utils import _unflatten_dense_tensors
from torch.nn.utils import parameters_to_vector

bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm)


def split_bn_bias(layer_groups):
    "Split the layers in `layer_groups` into batchnorm (`bn_types`) and non-batchnorm groups."
    split_groups = []
    for l in layer_groups:
        l1, l2 = [], []
        for c in l.children():
            if isinstance(c, bn_types):
                l2.append(c)
            else:
                l1.append(c)
        split_groups += [nn.Sequential(*l1), nn.Sequential(*l2)]
    return split_groups


def get_master(layer_groups, flat_master: bool = False):
    "Return two lists, one for the model parameters in FP16 and one for the master parameters in FP32."
    split_groups = split_bn_bias(layer_groups)
    model_params = [[param for param in lg.parameters() if param.requires_grad] for lg in split_groups]
    if flat_master:
        master_params = []
        for lg in model_params:
            if len(lg) != 0:
                mp = parameters_to_vector([param.data.float() for param in lg])
                mp = torch.nn.Parameter(mp, requires_grad=True)
                if mp.grad is None: mp.grad = mp.new(*mp.size())
                master_params.append([mp])
            else:
                master_params.append([])
        return model_params, master_params
    else:
        master_params = [[param.clone().float().detach() for param in lg] for lg in model_params]
        for mp in master_params:
            for param in mp: param.requires_grad = True
        return model_params, master_params


def model_g2master_g(model_params, master_params, flat_master: bool = False) -> None:
    "Copy the `model_params` gradients to `master_params` for the optimizer step."
    if flat_master:
        for model_group, master_group in zip(model_params, master_params):
            if len(master_group) != 0:
                master_group[0].grad.data.copy_(parameters_to_vector([p.grad.data.float() for p in model_group]))
    else:
        for model_group, master_group in zip(model_params, master_params):
            for model, master in zip(model_group, master_group):
                if model.grad is not None:
                    if master.grad is None: master.grad = master.data.new(*master.data.size())
                    master.grad.data.copy_(model.grad.data)
                else:
                    master.grad = None


def master2model(model_params, master_params, flat_master: bool = False) -> None:
    "Copy `master_params` to `model_params`."
    if flat_master:
        for model_group, master_group in zip(model_params, master_params):
            if len(model_group) != 0:
                for model, master in zip(model_group, _unflatten_dense_tensors(master_group[0].data, model_group)):
                    model.data.copy_(master)
    else:
        for model_group, master_group in zip(model_params, master_params):
            for model, master in zip(model_group, master_group): model.data.copy_(master.data)


def listify(p=None, q=None):
    "Make `p` listy and the same length as `q`."
    if p is None:
        p = []
    elif isinstance(p, str):
        p = [p]
    elif not isinstance(p, Iterable):
        p = [p]
    n = q if type(q) == int else len(p) if q is None else len(q)
    if len(p) == 1: p = p * n
    assert len(p) == n, f'List len mismatch ({len(p)} vs {n})'
    return list(p)


def trainable_params(m: nn.Module):
    "Return list of trainable params in `m`."
    res = filter(lambda p: p.requires_grad, m.parameters())
    return res


def is_tuple(x) -> bool: return isinstance(x, tuple)


# copy from fastai.
class OptimWrapper():
    "Basic wrapper around `opt` to simplify hyper-parameters changes."

    def __init__(self, opt, wd, true_wd: bool = False, bn_wd: bool = True):
        self.opt, self.true_wd, self.bn_wd = opt, true_wd, bn_wd
        self.opt_keys = list(self.opt.param_groups[0].keys())
        self.opt_keys.remove('params')
        self.read_defaults()
        self.wd = wd

    @classmethod
    def create(cls, opt_func, lr,
               layer_groups, **kwargs):
        "Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`."
        split_groups = split_bn_bias(layer_groups)
        opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups])
        opt = cls(opt, **kwargs)
        opt.lr, opt.opt_func = listify(lr, layer_groups), opt_func
        return opt

    def new(self, layer_groups):
        "Create a new `OptimWrapper` from `self` with another `layer_groups` but the same hyper-parameters."
        opt_func = getattr(self, 'opt_func', self.opt.__class__)
        split_groups = split_bn_bias(layer_groups)
        opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups])
        return self.create(opt_func, self.lr, layer_groups, wd=self.wd, true_wd=self.true_wd, bn_wd=self.bn_wd)

    def __repr__(self) -> str:
        return f'OptimWrapper over {repr(self.opt)}.\nTrue weight decay: {self.true_wd}'

    # Pytorch optimizer methods
    def step(self) -> None:
        "Set weight decay and step optimizer."
        # weight decay outside of optimizer step (AdamW)
        if self.true_wd:
            for lr, wd, pg1, pg2 in zip(self._lr, self._wd, self.opt.param_groups[::2], self.opt.param_groups[1::2]):
                for p in pg1['params']:
                    # When some parameters are fixed:  Shaoshuai Shi
                    if p.requires_grad is False:
                        continue
                    p.data.mul_(1 - wd * lr)
                if self.bn_wd:
                    for p in pg2['params']:
                        # When some parameters are fixed:  Shaoshuai Shi
                        if p.requires_grad is False:
                            continue
                        p.data.mul_(1 - wd * lr)
            self.set_val('weight_decay', listify(0, self._wd))
        self.opt.step()

    def zero_grad(self) -> None:
        "Clear optimizer gradients."
        self.opt.zero_grad()

    # Passthrough to the inner opt.
    def __getattr__(self, k: str):
        return getattr(self.opt, k, None)

    def clear(self):
        "Reset the state of the inner optimizer."
        sd = self.state_dict()
        sd['state'] = {}
        self.load_state_dict(sd)

    # Hyperparameters as properties
    @property
    def lr(self) -> float:
        return self._lr[-1]

    @lr.setter
    def lr(self, val: float) -> None:
        self._lr = self.set_val('lr', listify(val, self._lr))

    @property
    def mom(self) -> float:
        return self._mom[-1]

    @mom.setter
    def mom(self, val: float) -> None:
        if 'momentum' in self.opt_keys:
            self.set_val('momentum', listify(val, self._mom))
        elif 'betas' in self.opt_keys:
            self.set_val('betas', (listify(val, self._mom), self._beta))
        self._mom = listify(val, self._mom)

    @property
    def beta(self) -> float:
        return None if self._beta is None else self._beta[-1]

    @beta.setter
    def beta(self, val: float) -> None:
        "Set beta (or alpha as makes sense for given optimizer)."
        if val is None: return
        if 'betas' in self.opt_keys:
            self.set_val('betas', (self._mom, listify(val, self._beta)))
        elif 'alpha' in self.opt_keys:
            self.set_val('alpha', listify(val, self._beta))
        self._beta = listify(val, self._beta)

    @property
    def wd(self) -> float:
        return self._wd[-1]

    @wd.setter
    def wd(self, val: float) -> None:
        "Set weight decay."
        if not self.true_wd: self.set_val('weight_decay', listify(val, self._wd), bn_groups=self.bn_wd)
        self._wd = listify(val, self._wd)

    # Helper functions
    def read_defaults(self) -> None:
        "Read the values inside the optimizer for the hyper-parameters."
        self._beta = None
        if 'lr' in self.opt_keys: self._lr = self.read_val('lr')
        if 'momentum' in self.opt_keys: self._mom = self.read_val('momentum')
        if 'alpha' in self.opt_keys: self._beta = self.read_val('alpha')
        if 'betas' in self.opt_keys: self._mom, self._beta = self.read_val('betas')
        if 'weight_decay' in self.opt_keys: self._wd = self.read_val('weight_decay')

    def set_val(self, key: str, val, bn_groups: bool = True):
        "Set `val` inside the optimizer dictionary at `key`."
        if is_tuple(val): val = [(v1, v2) for v1, v2 in zip(*val)]
        for v, pg1, pg2 in zip(val, self.opt.param_groups[::2], self.opt.param_groups[1::2]):
            pg1[key] = v
            if bn_groups: pg2[key] = v
        return val

    def read_val(self, key: str):
        "Read a hyperparameter `key` in the optimizer dictionary."
        val = [pg[key] for pg in self.opt.param_groups[::2]]
        if is_tuple(val[0]): val = [o[0] for o in val], [o[1] for o in val]
        return val


class FastAIMixedOptim(OptimWrapper):
    @classmethod
    def create(cls, opt_func, lr,
               layer_groups, model, flat_master=False, loss_scale=512.0, **kwargs):
        "Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`."
        opt = OptimWrapper.create(opt_func, lr, layer_groups, **kwargs)
        opt.model_params, opt.master_params = get_master(layer_groups, flat_master)
        opt.flat_master = flat_master
        opt.loss_scale = loss_scale
        opt.model = model
        # Changes the optimizer so that the optimization step is done in FP32.
        # opt = self.learn.opt
        mom, wd, beta = opt.mom, opt.wd, opt.beta
        lrs = [lr for lr in opt._lr for _ in range(2)]
        opt_params = [{'params': mp, 'lr': lr} for mp, lr in zip(opt.master_params, lrs)]
        opt.opt = opt_func(opt_params)
        opt.mom, opt.wd, opt.beta = mom, wd, beta
        return opt

    def step(self):
        model_g2master_g(self.model_params, self.master_params, self.flat_master)
        for group in self.master_params:
            for param in group: param.grad.div_(self.loss_scale)
        super(FastAIMixedOptim, self).step()
        self.model.zero_grad()
        # Update the params from master to model.
        master2model(self.model_params, self.master_params, self.flat_master)