File size: 12,462 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os

import torch
import tqdm
import time
import glob
from torch.nn.utils import clip_grad_norm_
from pcdet.utils import common_utils, commu_utils


def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, accumulated_iter, optim_cfg,
                    rank, tbar, total_it_each_epoch, dataloader_iter, tb_log=None, leave_pbar=False, 
                    use_logger_to_record=False, logger=None, logger_iter_interval=50, cur_epoch=None, 
                    total_epochs=None, ckpt_save_dir=None, ckpt_save_time_interval=300, show_gpu_stat=False, use_amp=False):
    if total_it_each_epoch == len(train_loader):
        dataloader_iter = iter(train_loader)

    ckpt_save_cnt = 1
    start_it = accumulated_iter % total_it_each_epoch

    scaler = torch.cuda.amp.GradScaler(enabled=use_amp, init_scale=optim_cfg.get('LOSS_SCALE_FP16', 2.0**16))
    
    if rank == 0:
        pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True)
        data_time = common_utils.AverageMeter()
        batch_time = common_utils.AverageMeter()
        forward_time = common_utils.AverageMeter()
        losses_m = common_utils.AverageMeter()

    end = time.time()
    for cur_it in range(start_it, total_it_each_epoch):
        try:
            batch = next(dataloader_iter)
        except StopIteration:
            dataloader_iter = iter(train_loader)
            batch = next(dataloader_iter)
            print('new iters')
        
        data_timer = time.time()
        cur_data_time = data_timer - end

        lr_scheduler.step(accumulated_iter, cur_epoch)

        try:
            cur_lr = float(optimizer.lr)
        except:
            cur_lr = optimizer.param_groups[0]['lr']

        if tb_log is not None:
            tb_log.add_scalar('meta_data/learning_rate', cur_lr, accumulated_iter)

        model.train()
        optimizer.zero_grad()

        with torch.cuda.amp.autocast(enabled=use_amp):
            loss, tb_dict, disp_dict = model_func(model, batch)

        scaler.scale(loss).backward()
        scaler.unscale_(optimizer)
        clip_grad_norm_(model.parameters(), optim_cfg.GRAD_NORM_CLIP)
        scaler.step(optimizer)
        scaler.update()

        accumulated_iter += 1
 
        cur_forward_time = time.time() - data_timer
        cur_batch_time = time.time() - end
        end = time.time()

        # average reduce
        avg_data_time = commu_utils.average_reduce_value(cur_data_time)
        avg_forward_time = commu_utils.average_reduce_value(cur_forward_time)
        avg_batch_time = commu_utils.average_reduce_value(cur_batch_time)

        # log to console and tensorboard
        if rank == 0:
            batch_size = batch.get('batch_size', None)
            
            data_time.update(avg_data_time)
            forward_time.update(avg_forward_time)
            batch_time.update(avg_batch_time)
            losses_m.update(loss.item() , batch_size)
            
            disp_dict.update({
                'loss': loss.item(), 'lr': cur_lr, 'd_time': f'{data_time.val:.2f}({data_time.avg:.2f})',
                'f_time': f'{forward_time.val:.2f}({forward_time.avg:.2f})', 'b_time': f'{batch_time.val:.2f}({batch_time.avg:.2f})'
            })
            
            if use_logger_to_record:
                if accumulated_iter % logger_iter_interval == 0 or cur_it == start_it or cur_it + 1 == total_it_each_epoch:
                    trained_time_past_all = tbar.format_dict['elapsed']
                    second_each_iter = pbar.format_dict['elapsed'] / max(cur_it - start_it + 1, 1.0)

                    trained_time_each_epoch = pbar.format_dict['elapsed']
                    remaining_second_each_epoch = second_each_iter * (total_it_each_epoch - cur_it)
                    remaining_second_all = second_each_iter * ((total_epochs - cur_epoch) * total_it_each_epoch - cur_it)
                    
                    logger.info(
                        'Train: {:>4d}/{} ({:>3.0f}%) [{:>4d}/{} ({:>3.0f}%)]  '
                        'Loss: {loss.val:#.4g} ({loss.avg:#.3g})  '
                        'LR: {lr:.3e}  '
                        f'Time cost: {tbar.format_interval(trained_time_each_epoch)}/{tbar.format_interval(remaining_second_each_epoch)} ' 
                        f'[{tbar.format_interval(trained_time_past_all)}/{tbar.format_interval(remaining_second_all)}]  '
                        'Acc_iter {acc_iter:<10d}  '
                        'Data time: {data_time.val:.2f}({data_time.avg:.2f})  '
                        'Forward time: {forward_time.val:.2f}({forward_time.avg:.2f})  '
                        'Batch time: {batch_time.val:.2f}({batch_time.avg:.2f})'.format(
                            cur_epoch+1,total_epochs, 100. * (cur_epoch+1) / total_epochs,
                            cur_it,total_it_each_epoch, 100. * cur_it / total_it_each_epoch,
                            loss=losses_m,
                            lr=cur_lr,
                            acc_iter=accumulated_iter,
                            data_time=data_time,
                            forward_time=forward_time,
                            batch_time=batch_time
                            )
                    )
                    
                    if show_gpu_stat and accumulated_iter % (3 * logger_iter_interval) == 0:
                        # To show the GPU utilization, please install gpustat through "pip install gpustat"
                        gpu_info = os.popen('gpustat').read()
                        logger.info(gpu_info)
            else:                
                pbar.update()
                pbar.set_postfix(dict(total_it=accumulated_iter))
                tbar.set_postfix(disp_dict)
                # tbar.refresh()

            if tb_log is not None:
                tb_log.add_scalar('train/loss', loss, accumulated_iter)
                tb_log.add_scalar('meta_data/learning_rate', cur_lr, accumulated_iter)
                for key, val in tb_dict.items():
                    tb_log.add_scalar('train/' + key, val, accumulated_iter)
            
            # save intermediate ckpt every {ckpt_save_time_interval} seconds         
            time_past_this_epoch = pbar.format_dict['elapsed']
            if time_past_this_epoch // ckpt_save_time_interval >= ckpt_save_cnt:
                ckpt_name = ckpt_save_dir / 'latest_model'
                save_checkpoint(
                    checkpoint_state(model, optimizer, cur_epoch, accumulated_iter), filename=ckpt_name,
                )
                logger.info(f'Save latest model to {ckpt_name}')
                ckpt_save_cnt += 1
                
    if rank == 0:
        pbar.close()
    return accumulated_iter


def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg,
                start_epoch, total_epochs, start_iter, rank, tb_log, ckpt_save_dir, train_sampler=None,
                lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50,
                merge_all_iters_to_one_epoch=False, use_amp=False,
                use_logger_to_record=False, logger=None, logger_iter_interval=None, ckpt_save_time_interval=None, show_gpu_stat=False, cfg=None):
    accumulated_iter = start_iter

    # use for disable data augmentation hook
    hook_config = cfg.get('HOOK', None) 
    augment_disable_flag = False

    with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar:
        total_it_each_epoch = len(train_loader)
        if merge_all_iters_to_one_epoch:
            assert hasattr(train_loader.dataset, 'merge_all_iters_to_one_epoch')
            train_loader.dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs)
            total_it_each_epoch = len(train_loader) // max(total_epochs, 1)

        dataloader_iter = iter(train_loader)
        for cur_epoch in tbar:
            if train_sampler is not None:
                train_sampler.set_epoch(cur_epoch)

            # train one epoch
            if lr_warmup_scheduler is not None and cur_epoch < optim_cfg.WARMUP_EPOCH:
                cur_scheduler = lr_warmup_scheduler
            else:
                cur_scheduler = lr_scheduler
            
            augment_disable_flag = disable_augmentation_hook(hook_config, dataloader_iter, total_epochs, cur_epoch, cfg, augment_disable_flag, logger)
            accumulated_iter = train_one_epoch(
                model, optimizer, train_loader, model_func,
                lr_scheduler=cur_scheduler,
                accumulated_iter=accumulated_iter, optim_cfg=optim_cfg,
                rank=rank, tbar=tbar, tb_log=tb_log,
                leave_pbar=(cur_epoch + 1 == total_epochs),
                total_it_each_epoch=total_it_each_epoch,
                dataloader_iter=dataloader_iter, 
                
                cur_epoch=cur_epoch, total_epochs=total_epochs,
                use_logger_to_record=use_logger_to_record, 
                logger=logger, logger_iter_interval=logger_iter_interval,
                ckpt_save_dir=ckpt_save_dir, ckpt_save_time_interval=ckpt_save_time_interval, 
                show_gpu_stat=show_gpu_stat,
                use_amp=use_amp
            )

            # save trained model
            trained_epoch = cur_epoch + 1
            if trained_epoch % ckpt_save_interval == 0 and rank == 0:

                ckpt_list = glob.glob(str(ckpt_save_dir / 'checkpoint_epoch_*.pth'))
                ckpt_list.sort(key=os.path.getmtime)

                if ckpt_list.__len__() >= max_ckpt_save_num:
                    for cur_file_idx in range(0, len(ckpt_list) - max_ckpt_save_num + 1):
                        os.remove(ckpt_list[cur_file_idx])

                ckpt_name = ckpt_save_dir / ('checkpoint_epoch_%d' % trained_epoch)
                save_checkpoint(
                    checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name,
                )


def model_state_to_cpu(model_state):
    model_state_cpu = type(model_state)()  # ordered dict
    for key, val in model_state.items():
        model_state_cpu[key] = val.cpu()
    return model_state_cpu


def checkpoint_state(model=None, optimizer=None, epoch=None, it=None):
    optim_state = optimizer.state_dict() if optimizer is not None else None
    if model is not None:
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            model_state = model_state_to_cpu(model.module.state_dict())
        else:
            model_state = model.state_dict()
    else:
        model_state = None

    try:
        import pcdet
        version = 'pcdet+' + pcdet.__version__
    except:
        version = 'none'

    return {'epoch': epoch, 'it': it, 'model_state': model_state, 'optimizer_state': optim_state, 'version': version}


def save_checkpoint(state, filename='checkpoint'):
    if False and 'optimizer_state' in state:
        optimizer_state = state['optimizer_state']
        state.pop('optimizer_state', None)
        optimizer_filename = '{}_optim.pth'.format(filename)
        if torch.__version__ >= '1.4':
            torch.save({'optimizer_state': optimizer_state}, optimizer_filename, _use_new_zipfile_serialization=False)
        else:
            torch.save({'optimizer_state': optimizer_state}, optimizer_filename)

    filename = '{}.pth'.format(filename)
    if torch.__version__ >= '1.4':
        torch.save(state, filename, _use_new_zipfile_serialization=False)
    else:
        torch.save(state, filename)


def disable_augmentation_hook(hook_config, dataloader, total_epochs, cur_epoch, cfg, flag, logger):
    """
    This hook turns off the data augmentation during training.
    """
    if hook_config is not None:
        DisableAugmentationHook = hook_config.get('DisableAugmentationHook', None)
        if DisableAugmentationHook is not None:
            num_last_epochs = DisableAugmentationHook.NUM_LAST_EPOCHS
            if (total_epochs - num_last_epochs) <= cur_epoch and not flag:
                DISABLE_AUG_LIST = DisableAugmentationHook.DISABLE_AUG_LIST
                dataset_cfg=cfg.DATA_CONFIG
                logger.info(f'Disable augmentations: {DISABLE_AUG_LIST}')
                dataset_cfg.DATA_AUGMENTOR.DISABLE_AUG_LIST = DISABLE_AUG_LIST
                dataloader._dataset.data_augmentor.disable_augmentation(dataset_cfg.DATA_AUGMENTOR)
                flag = True
    return flag