File size: 48,616 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 |
from torch_geometric.data import HeteroData
import os
import json
import yaml
import pathlib
from src.utils import count_parameters, AVGMeter, Reporter, Timer
from src.oven import Oven
from loguru import logger
import torch.distributed as dist
from src.utils import set_random_seed, setup_distributed, setup_default_logging_wt_dir
import pprint
import torch
import torch.nn as nn
import argparse
from torch.nn.utils import clip_grad_norm_
import numpy as np
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.nn import Linear, ResGatedGraphConv, HeteroConv
import torch.nn.functional as F
from scipy.sparse.csgraph import floyd_warshall
from metrics import RMSE
import traceback
def vm_va_matrix(batch: HeteroData, mode="train"):
Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5
Ybus = create_Ybus(batch)
delta_p, delta_q = deltapq_loss(batch, Ybus)
matrix = {
f"{mode}/PQ_Vm_rmse": RMSE(batch['PQ'].x[:, Vm], batch['PQ'].y[:, Vm]),
f"{mode}/PQ_Va_rmse": RMSE(batch['PQ'].x[:, Va], batch['PQ'].y[:, Va]),
f"{mode}/PV_Va_rmse": RMSE(batch['PV'].x[:, Va], batch['PV'].y[:, Va]),
f"{mode}/delta_p": delta_p.abs().mean().item(),
f"{mode}/delta_q": delta_q.abs().mean().item(),
}
return matrix
def bi_deltapq_loss(graph_data: HeteroData, need_clone=False,
filt_type=True, aggr='abs'):
"""compute deltapq loss
Args:
graph_data (Hetero Graph): Batched Hetero graph data
preds (dict): preds results
Returns:
torch.float: deltapq loss
"""
def inner_deltapq_loss(bus, branch, edge_index, device):
# makeYbus, reference to pypower makeYbus
nb = bus.shape[0] # number of buses
nl = edge_index.shape[1] # number of branch
# branch = homo_graph_data.edge_attr
BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4
# bus = homo_graph_data.x
PD, QD, GS, BS, PG, QG, VM, VA = 0, 1, 2, 3, 4, 5, 6, 7
Ys = 1.0 / (branch[:, BR_R] + 1j * branch[:, BR_X])
Bc = branch[:, BR_B]
tap = torch.ones(nl).to(device)
i = torch.nonzero(branch[:, TAP])
tap[i] = branch[i, TAP]
tap = tap * torch.exp(1j * branch[:, SHIFT])
Ytt = Ys + 1j * Bc / 2
Yff = Ytt / (tap * torch.conj(tap))
Yft = - Ys / torch.conj(tap)
Ytf = - Ys / tap
Ysh = bus[:, GS] + 1j * bus[:, BS]
# build connection matrices
f = edge_index[0]
t = edge_index[1]
Cf = torch.sparse_coo_tensor(
torch.vstack([torch.arange(nl).to(device), f]),
torch.ones(nl).to(device),
(nl, nb)
).to(torch.complex64)
Ct = torch.sparse_coo_tensor(
torch.vstack([torch.arange(nl).to(device), t]),
torch.ones(nl).to(device),
(nl, nb)
).to(torch.complex64)
i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device)
i_ft = torch.cat([f, t], dim=0)
Yf = torch.sparse_coo_tensor(
torch.vstack([i_nl, i_ft]),
torch.cat([Yff, Yft], dim=0),
(nl, nb),
dtype=torch.complex64
)
Yt = torch.sparse_coo_tensor(
torch.vstack([i_nl, i_ft]),
torch.cat([Ytf, Ytt], dim=0),
(nl, nb),
dtype=torch.complex64
)
Ysh_square = torch.sparse_coo_tensor(
torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device),
Ysh,
(nb, nb),
dtype=torch.complex64
)
Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\
torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square
v = bus[:, VM] * torch.exp(1j * bus[:, VA])
i = torch.matmul(Ybus, v)
i = torch.conj(i)
s = v * i
pd = bus[:, PD] + 1j * bus[:, QD]
pg = bus[:, PG] + 1j * bus[:, QG]
s = s + pd - pg
delta_p = torch.real(s)
delta_q = torch.imag(s)
return delta_p, delta_q
# preprocess
if need_clone:
graph_data = graph_data.clone()
device = graph_data['PQ'].x.device
# PQ: PD, QD, GS, BS, PG, QG, Vm, Va
graph_data['PQ'].x = torch.cat([
graph_data['PQ'].supply,
graph_data['PQ'].x[:, :2]],
dim=1)
# PV: PD, QD, GS, BS, PG, QG, Vm, Va
graph_data['PV'].x = torch.cat([
graph_data['PV'].supply,
graph_data['PV'].x[:, :2]],
dim=1)
# Slack PD, QD, GS, BS, PG, QG, Vm, Va
graph_data['Slack'].x = torch.cat([
graph_data['Slack'].supply,
graph_data['Slack'].x[:, :2]],
dim=1)
# convert to homo graph for computing Ybus loss
homo_graph_data = graph_data.to_homogeneous()
index_diff = homo_graph_data.edge_index[1, :] - homo_graph_data.edge_index[0, :]
# to index bigger than from index
edge_attr_1 = homo_graph_data.edge_attr[index_diff > 0, :]
edge_index_1 = homo_graph_data.edge_index[:, index_diff > 0]
delta_p_1, delta_q_1 = inner_deltapq_loss(homo_graph_data.x, edge_attr_1, edge_index_1, device)
# from index bigger than to index
edge_index_2 = homo_graph_data.edge_index[:, index_diff < 0]
edge_attr_2 = homo_graph_data.edge_attr[index_diff < 0, :]
delta_p_2, delta_q_2 = inner_deltapq_loss(homo_graph_data.x, edge_attr_2, edge_index_2, device)
delta_p, delta_q = (delta_p_1 + delta_p_2) / 2.0, (delta_q_1 + delta_q_2) / 2.0
if filt_type:
PQ_mask = homo_graph_data['node_type'] == 0
PV_mask = homo_graph_data['node_type'] == 1
delta_p = delta_p[PQ_mask | PV_mask]
delta_q = delta_q[PQ_mask]
if aggr == "abs":
loss = delta_p.abs().mean() + delta_q.abs().mean()
elif aggr == "square":
loss = (delta_p**2).mean() + (delta_q**2).mean()
else:
raise TypeError(f"no such aggr: {aggr}")
return loss
def create_Ybus(batch: HeteroData):
homo_batch = batch.to_homogeneous().detach()
bus = homo_batch.x
index_diff = homo_batch.edge_index[1, :] - homo_batch.edge_index[0, :]
# to index bigger than from index
edge_attr = homo_batch.edge_attr[index_diff > 0, :]
edge_index_ori = homo_batch.edge_index[:, index_diff > 0]
device = batch['PQ'].x.device
with torch.no_grad():
edge_mask = torch.isnan(edge_attr[:,0])
edge_attr = edge_attr[~edge_mask]
edge_index = torch.vstack([edge_index_ori[0][~edge_mask],edge_index_ori[1][~edge_mask]])
# makeYbus, reference to pypower makeYbus
nb = bus.shape[0] # number of buses
nl = edge_index.shape[1] # number of edges
Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5
BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4
Ys = 1.0 / (edge_attr[:, BR_R] + 1j * edge_attr[:, BR_X])
Bc = edge_attr[:, BR_B]
tap = torch.ones(nl).to(device)
i = torch.nonzero(edge_attr[:, TAP])
tap[i] = edge_attr[i, TAP]
tap = tap * torch.exp(1j * edge_attr[:, SHIFT])
Ytt = Ys + 1j * Bc / 2
Yff = Ytt / (tap * torch.conj(tap))
Yft = - Ys / torch.conj(tap)
Ytf = - Ys / tap
Ysh = bus[:, Gs] + 1j * bus[:, Bs]
# build connection matrices
f = edge_index[0]
t = edge_index[1]
Cf = torch.sparse_coo_tensor(
torch.vstack([torch.arange(nl).to(device), f]),
torch.ones(nl).to(device),
(nl, nb)
).to(torch.complex64)
Ct = torch.sparse_coo_tensor(
torch.vstack([torch.arange(nl).to(device), t]),
torch.ones(nl).to(device),
(nl, nb)
).to(torch.complex64)
i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device)
i_ft = torch.cat([f, t], dim=0)
Yf = torch.sparse_coo_tensor(
torch.vstack([i_nl, i_ft]),
torch.cat([Yff, Yft], dim=0),
(nl, nb),
dtype=torch.complex64
)
Yt = torch.sparse_coo_tensor(
torch.vstack([i_nl, i_ft]),
torch.cat([Ytf, Ytt], dim=0),
(nl, nb),
dtype=torch.complex64
)
Ysh_square = torch.sparse_coo_tensor(
torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device),
Ysh,
(nb, nb),
dtype=torch.complex64
)
Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\
torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square
return Ybus
def deltapq_loss(batch, Ybus):
Vm, Va, P_net, Q_net = 0, 1, 2, 3
bus = batch.to_homogeneous().x
v = bus[:, Vm] * torch.exp(1j * bus[:, Va])
i = torch.conj(torch.matmul(Ybus, v))
s = v * i + bus[:, P_net] + 1j * bus[:, Q_net]
delta_p = torch.real(s)
delta_q = torch.imag(s)
return delta_p, delta_q
# -------------------------- #
# 1. various modules #
# -------------------------- #
def compute_shortest_path_distances(adj_matrix):
distances = floyd_warshall(csgraph=adj_matrix, directed=False)
return distances
def convert_x_to_tanhx(tensor_in):
return torch.tanh(tensor_in)
# ----- ca
class CrossAttention(nn.Module):
def __init__(self, in_dim1, in_dim2, k_dim, v_dim, num_heads):
super(CrossAttention, self).__init__()
self.num_heads = num_heads
self.k_dim = k_dim
self.v_dim = v_dim
self.proj_q1 = nn.Linear(in_dim1, k_dim * num_heads, bias=False)
self.proj_k2 = nn.Linear(in_dim2, k_dim * num_heads, bias=False)
self.proj_v2 = nn.Linear(in_dim2, v_dim * num_heads, bias=False)
self.proj_o = nn.Linear(v_dim * num_heads, in_dim1)
def forward(self, x1, x2, mask=None):
batch_size, seq_len1, in_dim1 = x1.size()
seq_len2 = x2.size(1)
q1 = self.proj_q1(x1).view(batch_size, seq_len1, self.num_heads, self.k_dim).permute(0, 2, 1, 3)
k2 = self.proj_k2(x2).view(batch_size, seq_len2, self.num_heads, self.k_dim).permute(0, 2, 3, 1)
v2 = self.proj_v2(x2).view(batch_size, seq_len2, self.num_heads, self.v_dim).permute(0, 2, 1, 3)
attn = torch.matmul(q1, k2) / self.k_dim**0.5
# print("s1", q1.shape, k2.shape, attn.shape)
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e9)
attn = F.softmax(attn, dim=-1)
output = torch.matmul(attn, v2).permute(0, 2, 1, 3)
# print("s2", output.shape)
output= output.contiguous().view(batch_size, seq_len1, -1)
# print("s3", output.shape)
output = self.proj_o(output)
# print("s4", output.shape)
return output
# ------- ffn ---
class GLUFFN(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, dropout_ratio=0.1):
# in A*2, hidden:A2, out:A
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features * 2)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(dropout_ratio)
def forward(self, x):
x, v = self.fc1(x).chunk(2, dim=-1)
x = self.act(x) * v
x = self.fc2(x)
x = self.drop(x)
return x
class GatedFusion(nn.Module):
def __init__(self, in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
batch_size=100,
dropout_ratio=0.1):
super(GatedFusion, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features * 2, hidden_features * 2)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(dropout_ratio)
self.batch_size = batch_size
def forward(self, pq_features, slack_features):
# get size
BK, D = pq_features.size()
B = self.batch_size
K = BK // B
pq_features = pq_features.view(B, K, D) # (B, K, D)
slack_expanded = slack_features.unsqueeze(1).expand(-1, K, -1) # (B, K, D)
combined = torch.cat([pq_features, slack_expanded], dim=-1) # (B, K, 2D)
x = self.fc1(combined) # (B, K, 2 * hidden_features)
x, v = x.chunk(2, dim=-1) # (B, K, hidden_features) each
x = self.act(x) * v # (B, K, hidden_features)
x = self.fc2(x) # (B, K, D)
x = self.drop(x) # (B, K, D)
return x.contiguous().view(B*K, D)
# -------------------------- #
# 2. various layers #
# -------------------------- #
class GraphLayer(torch.nn.Module):
def __init__(self,
emb_dim,
edge_dim,
num_heads,
batch_size,
with_norm,
act_layer=nn.ReLU,
gcn_layer_per_block=2):
super().__init__()
self.graph_layers = nn.ModuleList()
for _ in range(gcn_layer_per_block):
self.graph_layers.append(
HeteroConv({
('PQ', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
('PQ', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
('PQ', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
('PV', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
('PV', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
('PV', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
('Slack', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
('Slack', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
},
aggr='sum')
)
self.act_layer = act_layer()
self.global_transform = nn.Linear(emb_dim, emb_dim)
self.cross_attention = CrossAttention(in_dim1=emb_dim,
in_dim2=emb_dim,
k_dim=emb_dim//num_heads,
v_dim=emb_dim//num_heads,
num_heads=num_heads)
self.norm = torch.nn.LayerNorm(emb_dim) if with_norm else nn.Identity()
self.batch_size = batch_size
def forward(self, batch: HeteroData):
graph_x_dict = batch.x_dict
# vitual global node
pq_x = torch.stack(torch.chunk(graph_x_dict['PQ'], self.batch_size, dim=0), dim=0) # B, 29, D
pv_x = torch.stack(torch.chunk(graph_x_dict['PV'], self.batch_size, dim=0), dim=0)
slack_x = torch.stack(torch.chunk(graph_x_dict['Slack'], self.batch_size, dim=0), dim=0)
global_feature = torch.cat((pq_x,pv_x,slack_x), dim=1) # B, (29+9+1), D
global_feature = self.global_transform(global_feature)
global_feature_mean = global_feature.mean(dim=1, keepdim=True)
global_feature_max, _ = global_feature.max(dim=1, keepdim=True)
# forward gcn
for layer in self.graph_layers:
graph_x_dict = layer(graph_x_dict,
batch.edge_index_dict,
batch.edge_attr_dict)
## NEW: add non-linear
graph_x_dict = {key: self.act_layer(x) for key, x in graph_x_dict.items()}
global_node_feat = torch.cat([global_feature_mean, global_feature_max], dim=1)
# cross attent the global feat.
res = {}
for key in ["PQ", "PV"]:
# get size
BN, K = batch[key].x.size()
B = self.batch_size
N = BN // B
# ca
graph_x_dict[key] = graph_x_dict[key] + self.cross_attention(graph_x_dict[key].view(B, N, K), global_node_feat).contiguous().view(B*N, K)
# norm
res[key] = self.norm(graph_x_dict[key])
res["Slack"] = graph_x_dict["Slack"]
return res
# ----- ffn layers
class FFNLayer(torch.nn.Module):
def __init__(self,
embed_dim_in: int,
embed_dim_hid: int,
embed_dim_out: int,
mlp_dropout: float,
with_norm: bool,
act_layer=nn.GELU):
super().__init__()
# in: embed_dim_out, hidden: embed_dim_hid*2, out: embed_dim_out
self.mlp = GLUFFN(in_features=embed_dim_in,
hidden_features=embed_dim_hid,
out_features=embed_dim_out,
act_layer=act_layer,
dropout_ratio=mlp_dropout)
self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity()
def forward(self, x):
x = x + self.mlp(x)
return self.norm(x)
class FFNFuseLayer(torch.nn.Module):
def __init__(self,
embed_dim_in: int,
embed_dim_hid: int,
embed_dim_out: int,
mlp_dropout: float,
with_norm: bool,
batch_size: int,
act_layer=nn.GELU):
super().__init__()
self.mlp = GatedFusion(in_features=embed_dim_in,
hidden_features=embed_dim_hid,
out_features=embed_dim_out,
act_layer=act_layer,
batch_size=batch_size,
dropout_ratio=mlp_dropout)
self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity()
def forward(self, x, x_aux):
x = x + self.mlp(x, x_aux)
return self.norm(x)
# -------------------------- #
# 3. building block #
# -------------------------- #
class HybridBlock(nn.Module):
def __init__(self,
emb_dim_in,
emb_dim_out,
with_norm,
edge_dim,
batch_size,
dropout_ratio=0.1,
layers_in_gcn=2,
heads_ca=4):
super(HybridBlock, self).__init__()
self.emb_dim_in = emb_dim_in
self.with_norm = with_norm
self.branch_graph = GraphLayer(emb_dim=emb_dim_in,
edge_dim=edge_dim,
num_heads=heads_ca,
batch_size=batch_size,
with_norm=with_norm,
gcn_layer_per_block=layers_in_gcn)
# ---- mlp: activation + increase dimension
self.ffn = nn.ModuleDict()
self.ffn['PQ'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
embed_dim_out=emb_dim_out,
batch_size=batch_size,
mlp_dropout=dropout_ratio,
with_norm=with_norm)
self.ffn['PV'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
embed_dim_out=emb_dim_out,
batch_size=batch_size,
mlp_dropout=dropout_ratio,
with_norm=with_norm)
self.ffn['Slack'] = FFNLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
embed_dim_out=emb_dim_out,
mlp_dropout=dropout_ratio,
with_norm=with_norm)
def forward(self, batch: HeteroData):
res_graph = self.branch_graph(batch)
feat_slack = res_graph["Slack"]
for key in res_graph:
x = res_graph[key]
if "slack" in key.lower():
batch[key].x = self.ffn[key](x)
else:
batch[key].x = self.ffn[key](x, feat_slack)
return batch
# -------------------------- #
# 4. powerflow net #
# -------------------------- #
class PFNet(nn.Module):
def __init__(self,
hidden_channels,
num_block,
with_norm,
batch_size,
dropout_ratio,
heads_ca,
layers_per_graph=2,
flag_use_edge_feat=False):
super(PFNet, self).__init__()
# ---- parse params ----
if isinstance(hidden_channels, list):
hidden_block_layers = hidden_channels
num_block = len(hidden_block_layers) - 1
elif isinstance(hidden_channels, int):
hidden_block_layers = [hidden_channels] * (num_block+1)
else:
raise TypeError("Unsupported type: {}".format(type(hidden_channels)))
self.hidden_block_layers = hidden_block_layers
self.flag_use_edge_feat = flag_use_edge_feat
# ---- edge encoder ----
if self.flag_use_edge_feat:
self.edge_encoder = Linear(5, hidden_channels)
edge_dim = hidden_channels
else:
self.edge_encoder = None
edge_dim = 5
# ---- node encoder ----
self.encoders = nn.ModuleDict()
self.encoders['PQ'] = Linear(6, hidden_block_layers[0])
self.encoders['PV'] = Linear(6, hidden_block_layers[0])
self.encoders['Slack'] = Linear(6, hidden_block_layers[0])
# ---- blocks ----
self.blocks = nn.ModuleList()
for channel_in, channel_out in zip(hidden_block_layers[:-1], hidden_block_layers[1:]):
self.blocks.append(
HybridBlock(emb_dim_in=channel_in,
emb_dim_out=channel_out,
with_norm=with_norm,
edge_dim=edge_dim,
batch_size=batch_size,
dropout_ratio=dropout_ratio,
layers_in_gcn=layers_per_graph,
heads_ca=heads_ca)
)
self.num_blocks = len(self.blocks)
# predictor
final_dim = sum(hidden_block_layers) - hidden_block_layers[0]
self.predictor = nn.ModuleDict()
self.predictor['PQ'] = Linear(final_dim, 6)
self.predictor['PV'] = Linear(final_dim, 6)
def forward(self, batch):
# construct edge feats if neccessary
if self.flag_use_edge_feat:
for key in batch.edge_attr_dict:
cur_edge_attr = batch.edge_attr_dict[key]
r, x = cur_edge_attr[:, 0], cur_edge_attr[:, 1]
cur_edge_attr[:, 0], cur_edge_attr[:, 1] = \
1.0 / torch.sqrt(r ** 2 + x ** 2), torch.arctan(r / x)
# edge_attr_dict[key] = self.edge_encoder(cur_edge_attr)
batch[key].edge_attr = self.edge_encoder(cur_edge_attr)
# encoding
for key, x in batch.x_dict.items():
# print("="*20, key, "\t", x.shape)
batch[key].x = self.encoders[key](x)
# blocks and aspp
multi_level_pq = []
multi_level_pv = []
for index, block in enumerate(self.blocks):
batch = block(batch)
multi_level_pq.append(batch["PQ"].x)
multi_level_pv.append(batch["PV"].x)
output = {
'PQ': self.predictor['PQ'](torch.cat(multi_level_pq, dim=1)),
'PV': self.predictor['PV'](torch.cat(multi_level_pv, dim=1))
}
return output
# -------------------------- #
# 5. iterative pf #
# -------------------------- #
class IterGCN(nn.Module):
def __init__(self,
hidden_channels,
num_block,
with_norm,
num_loops_train,
scaling_factor_vm,
scaling_factor_va,
loss_type,
batch_size, **kwargs):
super(IterGCN, self).__init__()
# param
self.scaling_factor_vm = scaling_factor_vm
self.scaling_factor_va = scaling_factor_va
self.num_loops = num_loops_train
# model
self.net = PFNet(hidden_channels=hidden_channels,
num_block=num_block,
with_norm=with_norm,
batch_size=batch_size,
dropout_ratio=kwargs.get("dropout_ratio", 0.1),
heads_ca=kwargs.get("heads_ca", 4),
layers_per_graph=kwargs.get("layers_per_graph", 2),
flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False)
)
# include a ema model for better I/O
self.ema_warmup_epoch = kwargs.get("ema_warmup_epoch", 0)
self.ema_decay_param = kwargs.get("ema_decay_param", 0.99)
self.flag_use_ema = kwargs.get("flag_use_ema", False)
if self.flag_use_ema:
self.ema_model = PFNet(hidden_channels=hidden_channels,
num_block=num_block,
with_norm=with_norm,
batch_size=batch_size,
dropout_ratio=kwargs.get("dropout_ratio", 0.1),
heads_ca=kwargs.get("heads_ca", 4),
layers_per_graph=kwargs.get("layers_per_graph", 2),
flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False)
)
for p in self.ema_model.parameters():
p.requires_grad = False
else:
self.ema_model = None
# loss
if loss_type == 'l1':
self.critien = nn.L1Loss()
elif loss_type == 'smooth_l1':
self.critien = nn.SmoothL1Loss()
elif loss_type == 'l2':
self.critien = nn.MSELoss()
elif loss_type == 'l3':
self.critien = nn.HuberLoss()
else:
raise TypeError(f"no such loss type: {loss_type}")
# loss weights
self.flag_weighted_loss = kwargs.get("flag_weighted_loss", False)
self.loss_weight_equ = kwargs.get("loss_weight_equ", 1.0)
self.loss_weight_vm = kwargs.get("loss_weight_vm", 1.0)
self.loss_weight_va = kwargs.get("loss_weight_va", 1.0)
def update_ema_model(self, epoch, i_iter, len_loader):
if not self.flag_use_ema:
return
# update teacher model with EMA
with torch.no_grad():
if epoch > self.ema_warmup_epoch:
ema_decay = min(
1
- 1
/ (
i_iter
- len_loader * self.ema_warmup_epoch
+ 1
),
self.ema_decay_param,
)
else:
ema_decay = 0.0
# update weight
for param_train, param_eval in zip(self.net.parameters(), self.ema_model.parameters()):
param_eval.data = param_eval.data * ema_decay + param_train.data * (1 - ema_decay)
# update bn
for buffer_train, buffer_eval in zip(self.net.buffers(), self.ema_model.buffers()):
buffer_eval.data = buffer_eval.data * ema_decay + buffer_train.data * (1 - ema_decay)
# buffer_eval.data = buffer_train.data
def forward(self, batch, flag_return_losses=False, flag_use_ema_infer=False, num_loop_infer=0):
# get size
num_PQ = batch['PQ'].x.shape[0]
num_PV = batch['PV'].x.shape[0]
num_Slack = batch['Slack'].x.shape[0]
Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5
# use different loops during inference phase
if num_loop_infer < 1:
num_loops = self.num_loops
else:
num_loops = num_loop_infer
# whether use ema model for inference
if not self.flag_use_ema:
flag_use_ema_infer = False
# loss record
loss = 0.0
res_dict = {"loss_equ": 0.0, "loss_pq_vm": 0.0, "loss_pq_va": 0.0, "loss_pv_va": 0.0}
Ybus = create_Ybus(batch.detach())
delta_p, delta_q = deltapq_loss(batch, Ybus)
# iterative loops
for i in range(num_loops):
# print("-"*50, i)
# ----------- updated input ------------
cur_batch = batch.clone()
# use ema for better iterative fittings
if self.flag_use_ema and i > 0 and not flag_use_ema_infer:
self.ema_model.eval()
with torch.no_grad():
output_ema = self.ema_model(cur_batch_hist)
del cur_batch_hist
cur_batch['PV'].x[:, Va] = cur_batch['PV'].x[:, Va] - output['PV'][:, Va] * self.scaling_factor_va + output_ema['PV'][:, Va] * self.scaling_factor_va
cur_batch['PQ'].x[:, Vm] = cur_batch['PQ'].x[:, Vm] - output['PQ'][:, Vm] * self.scaling_factor_vm + output_ema['PQ'][:, Vm] * self.scaling_factor_vm
cur_batch['PQ'].x[:, Va] = cur_batch['PQ'].x[:, Va] - output['PQ'][:, Va] * self.scaling_factor_va + output_ema['PQ'][:, Va] * self.scaling_factor_va
delta_p, delta_q = deltapq_loss(cur_batch, Ybus)
self.ema_model.train()
# print("#"*20, cur_batch['PQ'].x.shape)
# update the inputs --- use deltap and deltaq
cur_batch['PQ'].x[:, P_net] = delta_p[:num_PQ] # deltap
cur_batch['PQ'].x[:, Q_net] = delta_q[:num_PQ] # deltaq
cur_batch['PV'].x[:, P_net] = delta_p[num_PQ:num_PQ+num_PV]
cur_batch = cur_batch.detach()
cur_batch_hist = cur_batch.clone().detach()
# ----------- forward ------------
if flag_use_ema_infer:
output = self.ema_model(cur_batch)
else:
output = self.net(cur_batch)
# --------------- update vm and va --------------
batch['PV'].x[:, Va] += output['PV'][:, Va] * self.scaling_factor_va
batch['PQ'].x[:, Vm] += output['PQ'][:, Vm] * self.scaling_factor_vm
batch['PQ'].x[:, Va] += output['PQ'][:, Va] * self.scaling_factor_va
# --------------- calculate loss --------------
delta_p, delta_q = deltapq_loss(batch, Ybus)
equ_loss = self.critien(delta_p[:num_PQ+num_PV],
torch.zeros_like(delta_p[:num_PQ+num_PV]))\
+ self.critien(delta_q[:num_PQ][batch['PQ'].q_mask],
torch.zeros_like(delta_q[:num_PQ][batch['PQ'].q_mask]))
pq_vm_loss = self.critien(batch['PQ'].x[:,Vm], batch['PQ'].y[:,Vm])
pv_va_loss = self.critien(batch['PV'].x[:,Va], batch['PV'].y[:,Va])
pq_va_loss = self.critien(batch['PQ'].x[:,Va], batch['PQ'].y[:,Va])
if flag_return_losses:
res_dict['loss_equ'] += equ_loss.cpu().item()
res_dict['loss_pq_vm'] += pq_vm_loss.cpu().item()
res_dict['loss_pq_va'] += pq_va_loss.cpu().item()
res_dict['loss_pv_va'] += pv_va_loss.cpu().item()
if self.flag_weighted_loss:
loss = loss + equ_loss * self.loss_weight_equ + pq_vm_loss * self.loss_weight_vm + (pv_va_loss + pq_va_loss) * self.loss_weight_va
else:
loss = loss + equ_loss + pq_vm_loss + pv_va_loss + pq_va_loss
batch['PQ'].x[~batch['PQ'].q_mask, Q_net] = -delta_q[:num_PQ][~batch['PQ'].q_mask]
batch['PV'].x[:, Q_net] = -delta_q[num_PQ:num_PQ+num_PV]
batch['Slack'].x[:, P_net] = -delta_p[num_PQ+num_PV:num_PQ+num_PV+num_Slack]
batch['Slack'].x[:, Q_net] = -delta_q[num_PQ+num_PV:num_PQ+num_PV+num_Slack]
if flag_return_losses:
return batch, loss, res_dict
return batch, loss
# torch.autograd.set_detect_anomaly(True)
class SubclassOven(Oven):
def __init__(self, cfg, log_dir):
super(SubclassOven,self).__init__(cfg)
self.cfg = cfg
self.ngpus = cfg.get('ngpus', 1)
if self.ngpus == 0:
self.device = 'cpu'
else:
self.device = 'cuda'
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
self.reporter = Reporter(cfg, log_dir)
self.matrix = self._init_matrix()
self.train_loader, self.valid_loader = self._init_data()
self.criterion = self._init_criterion()
self.model = self._init_model()
self.optim, self.scheduler = self._init_optim()
checkpt_path = self.cfg['model'].get("resume_ckpt_path", "")
# self.resume_training = True if os.path.exists(os.path.join(self.cfg['log_path'], 'ckpt_latest.pt')) else False
self.resume_training = True if os.path.exists(checkpt_path) else False
self.checkpt_path = checkpt_path
# using ema info
self.flag_use_ema_model = self.cfg['model'].get("flag_use_ema", False)
def _init_matrix(self):
if self.cfg['model']['matrix'] == 'vm_va':
return vm_va_matrix
else:
raise TypeError(f"No such of matrix {self.cfg['model']['matrix']}")
def _init_model(self):
model = IterGCN(**self.cfg['model'])
model = model.to(self.device)
return model
def _init_criterion(self):
if self.cfg['loss']['type'] == "deltapq_loss":
return deltapq_loss
elif self.cfg['loss']['type'] == "bi_deltapq_loss":
return bi_deltapq_loss
else:
raise TypeError(f"No such of loss {self.cfg['loss']['type']}")
def exec_epoch(self, epoch, flag, flag_infer_ema=False):
flag_return_losses = self.cfg.get("flag_return_losses", False)
if flag == 'train':
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
logger.info(f'-------------------- Epoch: {epoch+1} --------------------')
self.model.train()
if self.cfg['distributed']:
self.train_loader.sampler.set_epoch(epoch)
# record vars
train_loss = AVGMeter()
train_matrix = dict()
total_batch = len(self.train_loader)
print_period = self.cfg['train'].get('logs_freq', 8)
print_freq = total_batch // print_period
print_freq_lst = [i * print_freq for i in range(1, print_period)] + [total_batch - 1]
# start loops
for batch_id, batch in enumerate(self.train_loader):
# data
batch.to(self.device, non_blocking=True)
# forward
self.optim.zero_grad()
if flag_return_losses:
pred, loss, record_losses = self.model(batch, flag_return_losses=True)
else:
pred, loss = self.model(batch)
# records
cur_matrix = self.matrix(pred)
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
# logger.info(f"Iter:{batch_id}/{total_batch} - {str(cur_matrix)}")
# print(cur_matrix)
pass
if batch_id == 0:
for key in cur_matrix:
train_matrix[key] = AVGMeter()
for key in cur_matrix:
train_matrix[key].update(cur_matrix[key])
# backwards
loss.backward()
clip_grad_norm_(self.model.parameters(), 1.0)
self.optim.step()
train_loss.update(loss.item())
# update ema
if self.flag_use_ema_model:
if self.cfg['distributed']:
self.model.module.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch)
else:
self.model.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch)
# print stats
if (batch_id in print_freq_lst) or ((batch_id + 1) == total_batch):
if self.cfg['distributed']:
if dist.get_rank() == 0:
if flag_return_losses:
ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()])
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}")
else:
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}")
else:
if flag_return_losses:
ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()])
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}")
else:
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}")
return train_loss, train_matrix
elif flag == 'valid':
n_loops_test = self.cfg['model'].get("num_loops_test", 1)
self.model.eval()
if self.cfg['distributed']:
world_size = dist.get_world_size()
self.valid_loader.sampler.set_epoch(epoch)
valid_loss = AVGMeter()
val_matrix = dict()
# start data loops
with torch.no_grad():
for batch_id, batch in enumerate(self.valid_loader):
batch.to(self.device)
if self.flag_use_ema_model:
pred, loss = self.model(batch, num_loop_infer=n_loops_test, flag_use_ema_infer=flag_infer_ema)
else:
pred, loss = self.model(batch, num_loop_infer=n_loops_test)
cur_matrix = self.matrix(pred, mode='val')
# collect performance 1 --- matrix
if self.cfg['distributed']:
# get all res from multiple gpus
for key in cur_matrix:
# tmp_value = cur_matrix[key].clone().detach().requires_grad_(False).cuda()
tmp_value = torch.tensor(cur_matrix[key]).cuda()
dist.all_reduce(tmp_value)
cur_matrix[key] = tmp_value.cpu().item() / world_size
if batch_id == 0: # record into val_matrix
for key in cur_matrix:
val_matrix[key] = AVGMeter()
for key in cur_matrix:
val_matrix[key].update(cur_matrix[key])
# collect performance 2 --- loss
if self.cfg['distributed']:
tmp_loss = loss.clone().detach()
dist.all_reduce(tmp_loss)
valid_loss.update(tmp_loss.cpu().item() / world_size)
else:
valid_loss.update(loss.cpu().item())
return valid_loss, val_matrix
else:
raise ValueError(f'flag == {flag} not support, choice[train, valid]')
def train(self):
if self.ngpus > 1:
dummy_batch_data = next(iter(self.train_loader))
dummy_batch_data.to(self.device, non_blocking=True)
with torch.no_grad():
if self.flag_use_ema_model:
_ = self.model(dummy_batch_data, num_loop_infer=1)
_ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True)
else:
_ = self.model(dummy_batch_data, num_loop_infer=1)
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M')
local_rank = int(os.environ["LOCAL_RANK"])
self.model = torch.nn.parallel.DistributedDataParallel(
self.model,
device_ids=[local_rank],
output_device=local_rank,
find_unused_parameters=True,
# find_unused_parameters=False
)
else:
dummy_batch_data = next(iter(self.train_loader))
dummy_batch_data.to(self.device, non_blocking=True)
with torch.no_grad():
# _ = self.model(dummy_batch_data, num_loop_infer=1)
if self.flag_use_ema_model:
_ = self.model(dummy_batch_data, num_loop_infer=1)
_ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True)
else:
_ = self.model(dummy_batch_data, num_loop_infer=1)
logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M')
if not self.resume_training:
self.perform_best = np.Infinity
self.perform_best_ep = -1
self.start_epoch = 0
self.perform_best_metrics = {}
else:
self.perform_best, self.perform_best_ep, self.start_epoch, self.perform_best_metrics = self._init_training_wt_checkpoint(self.checkpt_path)
local_best = self.perform_best
local_best_ep = self.perform_best_ep
local_best_metrics = self.perform_best_metrics
if self.flag_use_ema_model:
local_best_ema = self.perform_best
local_best_ep_ema = self.perform_best_ep
local_best_metrics_ema =self.perform_best_metrics
for epoch in range(self.start_epoch, self.cfg['train']['epochs']):
with Timer(rest_epochs=self.cfg['train']['epochs'] - (epoch + 1)) as timer:
train_loss, train_matrix = self.exec_epoch(epoch, flag='train')
valid_loss, val_matrix = self.exec_epoch(epoch, flag='valid')
if self.flag_use_ema_model:
valid_loss_ema, valid_matrix_ema = self.exec_epoch(epoch, flag='valid',
flag_infer_ema=True)
if self.scheduler:
if isinstance(self.scheduler, ReduceLROnPlateau):
self.scheduler.step(valid_loss.agg())
else:
self.scheduler.step()
if self.flag_use_ema_model:
local_best, local_best_ep, local_best_ema, local_best_ep_ema,local_best_metrics_ema = self.summary_epoch(epoch,
train_loss, train_matrix,
valid_loss, val_matrix,
timer, local_best, local_best_ep, local_best_metrics,
local_best_ema=local_best_ema,
local_best_ep_ema=local_best_ep_ema,
local_best_metrics_ema = local_best_metrics_ema,
valid_loss_ema=valid_loss_ema,
val_matrix_ema=valid_matrix_ema)
else:
local_best, local_best_ep, local_best_metrics = self.summary_epoch(epoch,
train_loss, train_matrix,
valid_loss, val_matrix,
timer,
local_best, local_best_ep,local_best_metrics)
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
self.reporter.close()
return local_best_ep_ema,local_best_metrics_ema
if __name__ == "__main__":
str2bool = lambda x: x.lower() == 'true'
parser = argparse.ArgumentParser()
parser.add_argument("--out_dir", type=str, default="run_0")
parser.add_argument('--config', type=str, default='./configs/default.yaml')
parser.add_argument('--distributed', default=False, action='store_true')
parser.add_argument('--local-rank', default=0, type=int, help='node rank for distributed training')
parser.add_argument("--seed", type=int, default=2024)
parser.add_argument("--ngpus", type=int, default=1)
args = parser.parse_args()
try:
with open(args.config, 'r') as file:
cfg = yaml.safe_load(file)
for key, value in vars(args).items():
if value is not None:
cfg[key] = value
cfg['log_path'] = os.path.join(cfg['log_path'], os.path.basename(args.config)[:-5])
metadata = (cfg['data']['meta']['node'],
list(map(tuple, cfg['data']['meta']['edge'])))
set_random_seed(cfg["seed"] if cfg["seed"] > 0 else 1, deterministic=False)
if cfg['distributed']:
rank, word_size = setup_distributed()
if not os.path.exists(cfg["log_path"]) and rank == 0:
os.makedirs(cfg["log_path"])
if rank == 0:
# curr_timestr = setup_default_logging(cfg["log_path"], False)
curr_timestr = setup_default_logging_wt_dir(cfg["log_path"])
cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr)
os.makedirs(cfg["log_path"], exist_ok=True)
csv_path = os.path.join(cfg["log_path"], "out_stat.csv")
from shutil import copyfile
output_yaml = os.path.join(cfg["log_path"], "config.yaml")
copyfile(cfg['config'], output_yaml)
else:
csv_path = None
if rank == 0:
logger.info("\n{}".format(pprint.pformat(cfg)))
# make sure all folder are correctly created at rank == 0
dist.barrier()
else:
if not os.path.exists(cfg["log_path"]):
os.makedirs(cfg["log_path"])
# curr_timestr = setup_default_logging(cfg["log_path"], False)
curr_timestr = setup_default_logging_wt_dir(cfg["log_path"])
cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr)
os.makedirs(cfg["log_path"], exist_ok=True)
csv_path = os.path.join(cfg["log_path"], "info_{}_stat.csv".format(curr_timestr))
from shutil import copyfile
output_yaml = os.path.join(cfg["log_path"], "config.yaml")
copyfile(cfg['config'], output_yaml)
logger.info("\n{}".format(pprint.pformat(cfg)))
log_dir = os.path.join(args.out_dir, 'logs')
pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
oven = SubclassOven(cfg, log_dir)
local_best_ep_ema,local_best_metrics_ema = oven.train()
local_best_metrics_ema.update({"epoch":local_best_ep_ema})
final_infos = {
"IEEE39":{
"means": local_best_metrics_ema
}
}
pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
with open(os.path.join(args.out_dir, "final_info.json"), "w") as f:
json.dump(final_infos, f)
except Exception as e:
print("Original error in subprocess:", flush=True)
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
raise |