File size: 48,616 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
from torch_geometric.data import HeteroData
import os
import json
import yaml
import pathlib
from src.utils import count_parameters, AVGMeter, Reporter, Timer
from src.oven import Oven
from loguru import logger
import torch.distributed as dist
from src.utils import set_random_seed, setup_distributed, setup_default_logging_wt_dir
import pprint
import torch
import torch.nn as nn
import argparse
from torch.nn.utils import clip_grad_norm_
import numpy as np
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.nn import Linear, ResGatedGraphConv, HeteroConv
import torch.nn.functional as F
from scipy.sparse.csgraph import floyd_warshall
from metrics import RMSE
import traceback
def vm_va_matrix(batch: HeteroData, mode="train"):
    Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5
    Ybus = create_Ybus(batch)
    delta_p, delta_q = deltapq_loss(batch, Ybus)
    matrix = {
        f"{mode}/PQ_Vm_rmse": RMSE(batch['PQ'].x[:, Vm], batch['PQ'].y[:, Vm]),
        f"{mode}/PQ_Va_rmse": RMSE(batch['PQ'].x[:, Va], batch['PQ'].y[:, Va]),
        f"{mode}/PV_Va_rmse": RMSE(batch['PV'].x[:, Va], batch['PV'].y[:, Va]),
        f"{mode}/delta_p": delta_p.abs().mean().item(),
        f"{mode}/delta_q": delta_q.abs().mean().item(),
    }
    return matrix

def bi_deltapq_loss(graph_data: HeteroData, need_clone=False,
                    filt_type=True, aggr='abs'):
    """compute deltapq loss

    Args:
        graph_data (Hetero Graph): Batched Hetero graph data
        preds (dict): preds results

    Returns:
        torch.float: deltapq loss
    """
    def inner_deltapq_loss(bus, branch, edge_index, device):
        # makeYbus, reference to pypower makeYbus
        nb = bus.shape[0]  # number of buses
        nl = edge_index.shape[1]  # number of branch

        # branch = homo_graph_data.edge_attr
        BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4
        # bus = homo_graph_data.x
        PD, QD, GS, BS, PG, QG, VM, VA = 0, 1, 2, 3, 4, 5, 6, 7

        Ys = 1.0 / (branch[:, BR_R] + 1j * branch[:, BR_X])
        Bc = branch[:, BR_B]
        tap = torch.ones(nl).to(device)
        i = torch.nonzero(branch[:, TAP])
        tap[i] = branch[i, TAP]
        tap = tap * torch.exp(1j * branch[:, SHIFT])

        Ytt = Ys + 1j * Bc / 2
        Yff = Ytt / (tap * torch.conj(tap))
        Yft = - Ys / torch.conj(tap)
        Ytf = - Ys / tap

        Ysh = bus[:, GS] + 1j * bus[:, BS]

        # build connection matrices
        f = edge_index[0]
        t = edge_index[1]
        Cf = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), f]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)
        Ct = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), t]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)

        i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device)
        i_ft = torch.cat([f, t], dim=0)

        Yf = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Yff, Yft], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Yt = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Ytf, Ytt], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Ysh_square = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device),
            Ysh,
            (nb, nb),
            dtype=torch.complex64
        )

        Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\
            torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square

        v = bus[:, VM] * torch.exp(1j * bus[:, VA])

        i = torch.matmul(Ybus, v)
        i = torch.conj(i)
        s = v * i
        pd = bus[:, PD] + 1j * bus[:, QD]
        pg = bus[:, PG] + 1j * bus[:, QG]
        s = s + pd - pg

        delta_p = torch.real(s)
        delta_q = torch.imag(s)
        return delta_p, delta_q

    # preprocess
    if need_clone:
        graph_data = graph_data.clone()
    device = graph_data['PQ'].x.device

    # PQ: PD, QD, GS, BS, PG, QG, Vm, Va
    graph_data['PQ'].x = torch.cat([
        graph_data['PQ'].supply,
        graph_data['PQ'].x[:, :2]],
        dim=1)
    # PV: PD, QD, GS, BS, PG, QG, Vm, Va
    graph_data['PV'].x = torch.cat([
        graph_data['PV'].supply,
        graph_data['PV'].x[:, :2]],
        dim=1)
    # Slack PD, QD, GS, BS, PG, QG, Vm, Va
    graph_data['Slack'].x = torch.cat([
        graph_data['Slack'].supply,
        graph_data['Slack'].x[:, :2]],
        dim=1)

    # convert to homo graph for computing Ybus loss
    homo_graph_data = graph_data.to_homogeneous()

    index_diff = homo_graph_data.edge_index[1, :] - homo_graph_data.edge_index[0, :]
    # to index bigger than from index
    edge_attr_1 = homo_graph_data.edge_attr[index_diff > 0, :]
    edge_index_1 = homo_graph_data.edge_index[:, index_diff > 0]
    delta_p_1, delta_q_1 = inner_deltapq_loss(homo_graph_data.x, edge_attr_1, edge_index_1, device)

    # from index bigger than to index
    edge_index_2 = homo_graph_data.edge_index[:, index_diff < 0]
    edge_attr_2 = homo_graph_data.edge_attr[index_diff < 0, :]
    delta_p_2, delta_q_2 = inner_deltapq_loss(homo_graph_data.x, edge_attr_2, edge_index_2, device)

    delta_p, delta_q = (delta_p_1 + delta_p_2) / 2.0, (delta_q_1 + delta_q_2) / 2.0

    if filt_type:
        PQ_mask = homo_graph_data['node_type'] == 0
        PV_mask = homo_graph_data['node_type'] == 1
        delta_p = delta_p[PQ_mask | PV_mask]
        delta_q = delta_q[PQ_mask]

    if aggr == "abs":
        loss = delta_p.abs().mean() + delta_q.abs().mean()
    elif aggr == "square":
        loss = (delta_p**2).mean() + (delta_q**2).mean()
    else:
        raise TypeError(f"no such aggr: {aggr}")
    return loss


def create_Ybus(batch: HeteroData):
    homo_batch = batch.to_homogeneous().detach()
    bus = homo_batch.x
    index_diff = homo_batch.edge_index[1, :] - homo_batch.edge_index[0, :]
    # to index bigger than from index
    edge_attr = homo_batch.edge_attr[index_diff > 0, :]
    edge_index_ori = homo_batch.edge_index[:, index_diff > 0]
    device = batch['PQ'].x.device
    with torch.no_grad():
        edge_mask = torch.isnan(edge_attr[:,0])
        edge_attr = edge_attr[~edge_mask]
        edge_index = torch.vstack([edge_index_ori[0][~edge_mask],edge_index_ori[1][~edge_mask]])
        # makeYbus, reference to pypower makeYbus
        nb = bus.shape[0]  # number of buses
        nl = edge_index.shape[1]  # number of edges
        Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5
        BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4

        Ys = 1.0 / (edge_attr[:, BR_R] + 1j * edge_attr[:, BR_X])
        Bc = edge_attr[:, BR_B]
        tap = torch.ones(nl).to(device)
        i = torch.nonzero(edge_attr[:, TAP])
        tap[i] = edge_attr[i, TAP]
        tap = tap * torch.exp(1j * edge_attr[:, SHIFT])

        Ytt = Ys + 1j * Bc / 2
        Yff = Ytt / (tap * torch.conj(tap))
        Yft = - Ys / torch.conj(tap)
        Ytf = - Ys / tap

        Ysh = bus[:, Gs] + 1j * bus[:, Bs]

        # build connection matrices
        f = edge_index[0]
        t = edge_index[1]
        Cf = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), f]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)
        Ct = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nl).to(device), t]),
            torch.ones(nl).to(device),
            (nl, nb)
        ).to(torch.complex64)

        i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device)
        i_ft = torch.cat([f, t], dim=0)

        Yf = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Yff, Yft], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Yt = torch.sparse_coo_tensor(
            torch.vstack([i_nl, i_ft]),
            torch.cat([Ytf, Ytt], dim=0),
            (nl, nb),
            dtype=torch.complex64
        )

        Ysh_square = torch.sparse_coo_tensor(
            torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device),
            Ysh,
            (nb, nb),
            dtype=torch.complex64
        )

        Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\
                torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square
    return Ybus

def deltapq_loss(batch, Ybus):
    Vm, Va, P_net, Q_net = 0, 1, 2, 3
    bus = batch.to_homogeneous().x
    v = bus[:, Vm] * torch.exp(1j * bus[:, Va])
    i = torch.conj(torch.matmul(Ybus, v))
    s = v * i + bus[:, P_net] + 1j * bus[:, Q_net]

    delta_p = torch.real(s)
    delta_q = torch.imag(s)
    return delta_p, delta_q


# -------------------------- #
#     1. various modules     #
# -------------------------- #
def compute_shortest_path_distances(adj_matrix):
    distances = floyd_warshall(csgraph=adj_matrix, directed=False)
    return distances


def convert_x_to_tanhx(tensor_in):
    return torch.tanh(tensor_in)


# ----- ca
class CrossAttention(nn.Module):
    def __init__(self, in_dim1, in_dim2, k_dim, v_dim, num_heads):
        super(CrossAttention, self).__init__()
        self.num_heads = num_heads
        self.k_dim = k_dim
        self.v_dim = v_dim
        
        self.proj_q1 = nn.Linear(in_dim1, k_dim * num_heads, bias=False)
        self.proj_k2 = nn.Linear(in_dim2, k_dim * num_heads, bias=False)
        self.proj_v2 = nn.Linear(in_dim2, v_dim * num_heads, bias=False)
        self.proj_o = nn.Linear(v_dim * num_heads, in_dim1)
        
    def forward(self, x1, x2, mask=None):
        batch_size, seq_len1, in_dim1 = x1.size()
        seq_len2 = x2.size(1)
        
        q1 = self.proj_q1(x1).view(batch_size, seq_len1, self.num_heads, self.k_dim).permute(0, 2, 1, 3)
        k2 = self.proj_k2(x2).view(batch_size, seq_len2, self.num_heads, self.k_dim).permute(0, 2, 3, 1)
        v2 = self.proj_v2(x2).view(batch_size, seq_len2, self.num_heads, self.v_dim).permute(0, 2, 1, 3)
        
        attn = torch.matmul(q1, k2) / self.k_dim**0.5
        # print("s1", q1.shape, k2.shape, attn.shape)
        
        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)
        
        attn = F.softmax(attn, dim=-1)
        output = torch.matmul(attn, v2).permute(0, 2, 1, 3)
        # print("s2", output.shape)
        output= output.contiguous().view(batch_size, seq_len1, -1)
        # print("s3", output.shape)
        output = self.proj_o(output)
        # print("s4", output.shape)
    
        return output


# ------- ffn ---
class GLUFFN(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, dropout_ratio=0.1):
        # in A*2, hidden:A2, out:A
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features * 2)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(dropout_ratio)

    def forward(self, x):
        x, v = self.fc1(x).chunk(2, dim=-1)
        x = self.act(x) * v
        x = self.fc2(x)
        x = self.drop(x)
        return x


class GatedFusion(nn.Module):
    def __init__(self, in_features, 
                 hidden_features=None, 
                 out_features=None, 
                 act_layer=nn.GELU, 
                 batch_size=100,
                 dropout_ratio=0.1):
        super(GatedFusion, self).__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features * 2, hidden_features * 2)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(dropout_ratio)
        self.batch_size = batch_size

    def forward(self, pq_features, slack_features):
        # get size
        BK, D = pq_features.size()
        B = self.batch_size
        K = BK // B
        pq_features = pq_features.view(B, K, D)  # (B, K, D)
        slack_expanded = slack_features.unsqueeze(1).expand(-1, K, -1)  # (B, K, D)
        combined = torch.cat([pq_features, slack_expanded], dim=-1)  # (B, K, 2D)

        x = self.fc1(combined)  # (B, K, 2 * hidden_features)
        x, v = x.chunk(2, dim=-1)  # (B, K, hidden_features) each
        x = self.act(x) * v  # (B, K, hidden_features)
        x = self.fc2(x)  # (B, K, D)
        x = self.drop(x)  # (B, K, D)

        return x.contiguous().view(B*K, D)


# -------------------------- #
#     2. various layers      #
# -------------------------- #
class GraphLayer(torch.nn.Module):
    def __init__(self, 
                 emb_dim, 
                 edge_dim,
                 num_heads,
                 batch_size,
                 with_norm,
                 act_layer=nn.ReLU,
                 gcn_layer_per_block=2):
        super().__init__()
        
        self.graph_layers = nn.ModuleList()
        for _ in range(gcn_layer_per_block):
            self.graph_layers.append(
                HeteroConv({
                        ('PQ', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PQ', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PQ', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PV', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PV', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('PV', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('Slack', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                        ('Slack', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim),
                    }, 
                    aggr='sum')
            )
        self.act_layer = act_layer()
        self.global_transform = nn.Linear(emb_dim, emb_dim)

        self.cross_attention = CrossAttention(in_dim1=emb_dim,
                                              in_dim2=emb_dim,
                                              k_dim=emb_dim//num_heads,
                                              v_dim=emb_dim//num_heads,
                                              num_heads=num_heads)

        self.norm = torch.nn.LayerNorm(emb_dim) if with_norm else nn.Identity()
        self.batch_size = batch_size


    def forward(self, batch: HeteroData):
        graph_x_dict = batch.x_dict

        # vitual global node
        pq_x = torch.stack(torch.chunk(graph_x_dict['PQ'], self.batch_size, dim=0), dim=0) # B, 29, D
        pv_x = torch.stack(torch.chunk(graph_x_dict['PV'], self.batch_size, dim=0), dim=0)
        slack_x = torch.stack(torch.chunk(graph_x_dict['Slack'], self.batch_size, dim=0), dim=0)
        global_feature = torch.cat((pq_x,pv_x,slack_x), dim=1) # B, (29+9+1), D
        global_feature = self.global_transform(global_feature)
        global_feature_mean = global_feature.mean(dim=1, keepdim=True)
        global_feature_max, _ = global_feature.max(dim=1, keepdim=True)

        # forward gcn
        for layer in self.graph_layers:
            graph_x_dict = layer(graph_x_dict, 
                                 batch.edge_index_dict,
                                 batch.edge_attr_dict)
            ## NEW: add non-linear
            graph_x_dict = {key: self.act_layer(x) for key, x in graph_x_dict.items()}

        global_node_feat = torch.cat([global_feature_mean, global_feature_max], dim=1)
        
        # cross attent the global feat.
        res = {}
        for key in ["PQ", "PV"]:
            # get size
            BN, K = batch[key].x.size()
            B = self.batch_size
            N = BN // B
            # ca
            graph_x_dict[key] = graph_x_dict[key] + self.cross_attention(graph_x_dict[key].view(B, N, K), global_node_feat).contiguous().view(B*N, K)
            # norm
            res[key] = self.norm(graph_x_dict[key])
        res["Slack"] = graph_x_dict["Slack"]

        return res


# ----- ffn layers
class FFNLayer(torch.nn.Module):

    def __init__(self, 
                embed_dim_in: int,
                embed_dim_hid: int,
                embed_dim_out: int, 
                mlp_dropout: float, 
                with_norm: bool,
                act_layer=nn.GELU):
        super().__init__()

        # in: embed_dim_out, hidden: embed_dim_hid*2, out: embed_dim_out
        self.mlp = GLUFFN(in_features=embed_dim_in, 
                          hidden_features=embed_dim_hid, 
                          out_features=embed_dim_out,
                          act_layer=act_layer,
                          dropout_ratio=mlp_dropout)

        self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity()

    def forward(self, x):
        x = x + self.mlp(x)
        return self.norm(x)
    

class FFNFuseLayer(torch.nn.Module):

    def __init__(self, 
                embed_dim_in: int,
                embed_dim_hid: int,
                embed_dim_out: int, 
                mlp_dropout: float, 
                with_norm: bool,
                batch_size: int,
                act_layer=nn.GELU):
        super().__init__()
        self.mlp = GatedFusion(in_features=embed_dim_in, 
                          hidden_features=embed_dim_hid, 
                          out_features=embed_dim_out,
                          act_layer=act_layer, 
                          batch_size=batch_size,
                          dropout_ratio=mlp_dropout)

        self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity()

    def forward(self, x, x_aux):
        x = x + self.mlp(x, x_aux)
        return self.norm(x)


# -------------------------- #
#     3. building block      #
# -------------------------- #
class HybridBlock(nn.Module):
    def __init__(self, 
                 emb_dim_in, 
                 emb_dim_out, 
                 with_norm, 
                 edge_dim, 
                 batch_size,
                 dropout_ratio=0.1,
                 layers_in_gcn=2,
                 heads_ca=4):
        super(HybridBlock, self).__init__()
        self.emb_dim_in = emb_dim_in
        self.with_norm = with_norm

        self.branch_graph = GraphLayer(emb_dim=emb_dim_in,
                                       edge_dim=edge_dim, 
                                       num_heads=heads_ca, 
                                       batch_size=batch_size,
                                       with_norm=with_norm, 
                                       gcn_layer_per_block=layers_in_gcn)

        # ---- mlp: activation + increase dimension
        self.ffn = nn.ModuleDict()
        self.ffn['PQ'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
                                    embed_dim_out=emb_dim_out,
                                    batch_size=batch_size,
                                    mlp_dropout=dropout_ratio, 
                                    with_norm=with_norm)
        self.ffn['PV'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
                                    embed_dim_out=emb_dim_out,
                                    batch_size=batch_size,
                                    mlp_dropout=dropout_ratio, 
                                    with_norm=with_norm)
        self.ffn['Slack'] = FFNLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out,
                                    embed_dim_out=emb_dim_out,
                                    mlp_dropout=dropout_ratio, 
                                    with_norm=with_norm)

    def forward(self, batch: HeteroData):
        res_graph = self.branch_graph(batch)

        feat_slack = res_graph["Slack"]

        for key in res_graph:
            x = res_graph[key]
            if "slack" in key.lower():
                batch[key].x = self.ffn[key](x)
            else:
                batch[key].x = self.ffn[key](x, feat_slack)

        return batch

# -------------------------- #
#     4. powerflow net       #
# -------------------------- #
class PFNet(nn.Module):
    def __init__(self, 
                 hidden_channels, 
                 num_block, 
                 with_norm,  
                 batch_size,
                 dropout_ratio,
                 heads_ca, 
                 layers_per_graph=2,
                 flag_use_edge_feat=False):
        super(PFNet, self).__init__()

        # ---- parse params ----
        if isinstance(hidden_channels, list):
            hidden_block_layers = hidden_channels
            num_block = len(hidden_block_layers) - 1
        elif isinstance(hidden_channels, int):
            hidden_block_layers = [hidden_channels] * (num_block+1)
        else:
            raise TypeError("Unsupported type: {}".format(type(hidden_channels)))
        self.hidden_block_layers = hidden_block_layers
        self.flag_use_edge_feat = flag_use_edge_feat

        # ---- edge encoder ----
        if self.flag_use_edge_feat:
            self.edge_encoder = Linear(5, hidden_channels)
            edge_dim = hidden_channels
        else:
            self.edge_encoder = None
            edge_dim = 5

        # ---- node encoder ----
        self.encoders = nn.ModuleDict()
        self.encoders['PQ'] = Linear(6, hidden_block_layers[0])
        self.encoders['PV'] = Linear(6, hidden_block_layers[0])
        self.encoders['Slack'] = Linear(6, hidden_block_layers[0])
        
        # ---- blocks ----
        self.blocks = nn.ModuleList()
        for channel_in, channel_out in zip(hidden_block_layers[:-1], hidden_block_layers[1:]):
            self.blocks.append(
                HybridBlock(emb_dim_in=channel_in, 
                    emb_dim_out=channel_out, 
                    with_norm=with_norm, 
                    edge_dim=edge_dim, 
                    batch_size=batch_size,
                    dropout_ratio=dropout_ratio,
                    layers_in_gcn=layers_per_graph,
                    heads_ca=heads_ca)
            )
        self.num_blocks = len(self.blocks)
        
        # predictor        
        final_dim = sum(hidden_block_layers) - hidden_block_layers[0]
        self.predictor = nn.ModuleDict()
        self.predictor['PQ'] = Linear(final_dim, 6)
        self.predictor['PV'] = Linear(final_dim, 6)
        

    def forward(self, batch):
        # construct edge feats if neccessary
        if self.flag_use_edge_feat:
            for key in batch.edge_attr_dict:
                cur_edge_attr = batch.edge_attr_dict[key]
                r, x = cur_edge_attr[:, 0], cur_edge_attr[:, 1]
                cur_edge_attr[:, 0], cur_edge_attr[:, 1] = \
                    1.0 / torch.sqrt(r ** 2 + x ** 2), torch.arctan(r / x)
                # edge_attr_dict[key] = self.edge_encoder(cur_edge_attr)
                batch[key].edge_attr = self.edge_encoder(cur_edge_attr)
        
        # encoding
        for key, x in batch.x_dict.items():
            # print("="*20, key, "\t", x.shape)
            batch[key].x = self.encoders[key](x)

        # blocks and aspp
        multi_level_pq = []
        multi_level_pv = []
        for index, block in enumerate(self.blocks):
                batch = block(batch)
                multi_level_pq.append(batch["PQ"].x)
                multi_level_pv.append(batch["PV"].x)

        output = {
            'PQ': self.predictor['PQ'](torch.cat(multi_level_pq, dim=1)),
            'PV': self.predictor['PV'](torch.cat(multi_level_pv, dim=1))
        }
        return output

# -------------------------- #
#     5. iterative pf       #
# -------------------------- #
class IterGCN(nn.Module):
    def __init__(self, 
                 hidden_channels, 
                 num_block, 
                 with_norm,
                 num_loops_train, 
                 scaling_factor_vm, 
                 scaling_factor_va, 
                 loss_type,
                 batch_size, **kwargs):
        super(IterGCN, self).__init__()
        # param
        self.scaling_factor_vm = scaling_factor_vm
        self.scaling_factor_va = scaling_factor_va
        self.num_loops = num_loops_train

        # model
        self.net = PFNet(hidden_channels=hidden_channels, 
                         num_block=num_block, 
                         with_norm=with_norm, 
                         batch_size=batch_size, 
                         dropout_ratio=kwargs.get("dropout_ratio", 0.1), 
                         heads_ca=kwargs.get("heads_ca", 4),
                         layers_per_graph=kwargs.get("layers_per_graph", 2),
                         flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False)
                    )
        
        # include a ema model for better I/O
        self.ema_warmup_epoch = kwargs.get("ema_warmup_epoch", 0)
        self.ema_decay_param = kwargs.get("ema_decay_param", 0.99)
        self.flag_use_ema = kwargs.get("flag_use_ema", False)
        if self.flag_use_ema:
            self.ema_model = PFNet(hidden_channels=hidden_channels, 
                            num_block=num_block, 
                            with_norm=with_norm, 
                            batch_size=batch_size, 
                            dropout_ratio=kwargs.get("dropout_ratio", 0.1), 
                            heads_ca=kwargs.get("heads_ca", 4),
                            layers_per_graph=kwargs.get("layers_per_graph", 2),
                            flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False)
                        )

            for p in self.ema_model.parameters():
                p.requires_grad = False
        else:
            self.ema_model = None

        # loss
        if loss_type == 'l1':
            self.critien = nn.L1Loss()
        elif loss_type == 'smooth_l1':
            self.critien = nn.SmoothL1Loss()
        elif loss_type == 'l2':
            self.critien = nn.MSELoss()
        elif loss_type == 'l3':
            self.critien = nn.HuberLoss()   
        else:
            raise TypeError(f"no such loss type: {loss_type}")

        # loss weights
        self.flag_weighted_loss = kwargs.get("flag_weighted_loss", False)
        self.loss_weight_equ = kwargs.get("loss_weight_equ", 1.0)
        self.loss_weight_vm = kwargs.get("loss_weight_vm", 1.0)
        self.loss_weight_va = kwargs.get("loss_weight_va", 1.0)

    def update_ema_model(self, epoch, i_iter, len_loader):
        if not self.flag_use_ema:
            return 
        
        # update teacher model with EMA
        with torch.no_grad():
            if epoch > self.ema_warmup_epoch:
                ema_decay = min(
                    1
                    - 1
                    / (
                        i_iter
                        - len_loader * self.ema_warmup_epoch
                        + 1
                    ),
                    self.ema_decay_param,
                )
            else:
                ema_decay = 0.0

            # update weight
            for param_train, param_eval in zip(self.net.parameters(), self.ema_model.parameters()):
                param_eval.data = param_eval.data * ema_decay + param_train.data * (1 - ema_decay)
            # update bn
            for buffer_train, buffer_eval in zip(self.net.buffers(), self.ema_model.buffers()):
                buffer_eval.data = buffer_eval.data * ema_decay + buffer_train.data * (1 - ema_decay)
                # buffer_eval.data = buffer_train.data


    def forward(self, batch, flag_return_losses=False, flag_use_ema_infer=False, num_loop_infer=0):
        # get size
        num_PQ = batch['PQ'].x.shape[0]
        num_PV = batch['PV'].x.shape[0]
        num_Slack = batch['Slack'].x.shape[0]
        Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5

        # use different loops during inference phase
        if num_loop_infer < 1:
            num_loops = self.num_loops
        else:
            num_loops = num_loop_infer
        
        # whether use ema model for inference
        if not self.flag_use_ema:
            flag_use_ema_infer = False

        # loss record
        loss = 0.0
        res_dict = {"loss_equ": 0.0, "loss_pq_vm": 0.0, "loss_pq_va": 0.0, "loss_pv_va": 0.0}
        Ybus = create_Ybus(batch.detach())
        delta_p, delta_q = deltapq_loss(batch, Ybus)

        # iterative loops
        for i in range(num_loops):
            # print("-"*50, i)
            # ----------- updated input ------------
            cur_batch = batch.clone()

            # use ema for better iterative fittings
            if self.flag_use_ema and i > 0 and not flag_use_ema_infer:
                self.ema_model.eval()
                with torch.no_grad():
                    output_ema = self.ema_model(cur_batch_hist)
                del cur_batch_hist
                cur_batch['PV'].x[:, Va] = cur_batch['PV'].x[:, Va] - output['PV'][:, Va] * self.scaling_factor_va + output_ema['PV'][:, Va] * self.scaling_factor_va
                cur_batch['PQ'].x[:, Vm] = cur_batch['PQ'].x[:, Vm] - output['PQ'][:, Vm] * self.scaling_factor_vm + output_ema['PQ'][:, Vm] * self.scaling_factor_vm
                cur_batch['PQ'].x[:, Va] = cur_batch['PQ'].x[:, Va] - output['PQ'][:, Va] * self.scaling_factor_va + output_ema['PQ'][:, Va] * self.scaling_factor_va

                delta_p, delta_q = deltapq_loss(cur_batch, Ybus)
                self.ema_model.train()
                # print("#"*20, cur_batch['PQ'].x.shape)

            # update the inputs --- use deltap and deltaq
            cur_batch['PQ'].x[:, P_net] = delta_p[:num_PQ]  # deltap
            cur_batch['PQ'].x[:, Q_net] = delta_q[:num_PQ]  # deltaq
            cur_batch['PV'].x[:, P_net] = delta_p[num_PQ:num_PQ+num_PV]
            cur_batch = cur_batch.detach()
            cur_batch_hist = cur_batch.clone().detach()
            
            # ----------- forward ------------
            if flag_use_ema_infer:
                output = self.ema_model(cur_batch)
            else:
                output = self.net(cur_batch)

            # --------------- update vm and va --------------
            batch['PV'].x[:, Va] += output['PV'][:, Va] * self.scaling_factor_va
            batch['PQ'].x[:, Vm] += output['PQ'][:, Vm] * self.scaling_factor_vm
            batch['PQ'].x[:, Va] += output['PQ'][:, Va] * self.scaling_factor_va

            # --------------- calculate loss --------------
            delta_p, delta_q = deltapq_loss(batch, Ybus)

            equ_loss = self.critien(delta_p[:num_PQ+num_PV],
                                    torch.zeros_like(delta_p[:num_PQ+num_PV]))\
                    + self.critien(delta_q[:num_PQ][batch['PQ'].q_mask],
                                    torch.zeros_like(delta_q[:num_PQ][batch['PQ'].q_mask]))
            
            pq_vm_loss = self.critien(batch['PQ'].x[:,Vm], batch['PQ'].y[:,Vm])
            pv_va_loss = self.critien(batch['PV'].x[:,Va], batch['PV'].y[:,Va])
            pq_va_loss = self.critien(batch['PQ'].x[:,Va], batch['PQ'].y[:,Va])

            if flag_return_losses:
                res_dict['loss_equ'] += equ_loss.cpu().item()
                res_dict['loss_pq_vm'] += pq_vm_loss.cpu().item()
                res_dict['loss_pq_va'] += pq_va_loss.cpu().item()
                res_dict['loss_pv_va'] += pv_va_loss.cpu().item()
            
            if self.flag_weighted_loss:
                loss = loss + equ_loss * self.loss_weight_equ + pq_vm_loss * self.loss_weight_vm + (pv_va_loss + pq_va_loss) * self.loss_weight_va
            else:
                loss = loss + equ_loss + pq_vm_loss + pv_va_loss + pq_va_loss
            

        batch['PQ'].x[~batch['PQ'].q_mask, Q_net] = -delta_q[:num_PQ][~batch['PQ'].q_mask]
        batch['PV'].x[:, Q_net] = -delta_q[num_PQ:num_PQ+num_PV]
        batch['Slack'].x[:, P_net] = -delta_p[num_PQ+num_PV:num_PQ+num_PV+num_Slack]
        batch['Slack'].x[:, Q_net] = -delta_q[num_PQ+num_PV:num_PQ+num_PV+num_Slack]

        if flag_return_losses:
            return batch, loss, res_dict
        return batch, loss


# torch.autograd.set_detect_anomaly(True)
class SubclassOven(Oven):
    def __init__(self, cfg, log_dir):
        super(SubclassOven,self).__init__(cfg)
        self.cfg = cfg
        self.ngpus = cfg.get('ngpus', 1)
        if self.ngpus == 0:
            self.device = 'cpu'
        else:
            self.device = 'cuda'
        if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
            self.reporter = Reporter(cfg, log_dir)
        self.matrix = self._init_matrix()
        self.train_loader, self.valid_loader = self._init_data()
        self.criterion = self._init_criterion()
        self.model = self._init_model()
        self.optim, self.scheduler = self._init_optim()
        checkpt_path = self.cfg['model'].get("resume_ckpt_path", "")
        # self.resume_training = True if os.path.exists(os.path.join(self.cfg['log_path'], 'ckpt_latest.pt')) else False
        self.resume_training = True if os.path.exists(checkpt_path) else False
        self.checkpt_path = checkpt_path
        # using ema info
        self.flag_use_ema_model = self.cfg['model'].get("flag_use_ema", False)
        
    def _init_matrix(self):
        if self.cfg['model']['matrix'] == 'vm_va':
            return vm_va_matrix
        else:
            raise TypeError(f"No such of matrix {self.cfg['model']['matrix']}")

    def _init_model(self):        
        model = IterGCN(**self.cfg['model'])
        model = model.to(self.device)
        return model
    
    def _init_criterion(self):
        if self.cfg['loss']['type'] == "deltapq_loss":
            return deltapq_loss
        elif self.cfg['loss']['type'] == "bi_deltapq_loss":
            return bi_deltapq_loss
        else:
            raise TypeError(f"No such of loss {self.cfg['loss']['type']}")
        
    def exec_epoch(self, epoch, flag, flag_infer_ema=False):
        flag_return_losses = self.cfg.get("flag_return_losses", False)
        if flag == 'train':
            if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
                logger.info(f'-------------------- Epoch: {epoch+1} --------------------')
            self.model.train()
            if self.cfg['distributed']:
                self.train_loader.sampler.set_epoch(epoch)
            
            # record vars
            train_loss = AVGMeter()
            train_matrix = dict()
            total_batch = len(self.train_loader)
            print_period = self.cfg['train'].get('logs_freq', 8)
            print_freq = total_batch // print_period 
            print_freq_lst = [i * print_freq for i in range(1, print_period)] + [total_batch - 1]
            
            # start loops
            for batch_id, batch in enumerate(self.train_loader):
                # data
                batch.to(self.device, non_blocking=True)
                
                # forward
                self.optim.zero_grad()
                if flag_return_losses:
                    pred, loss, record_losses = self.model(batch, flag_return_losses=True)
                else:
                    pred, loss = self.model(batch)

                # records
                cur_matrix = self.matrix(pred)
                if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
                    # logger.info(f"Iter:{batch_id}/{total_batch} - {str(cur_matrix)}")
                    # print(cur_matrix)
                    pass
                if batch_id == 0:
                    for key in cur_matrix:
                        train_matrix[key] = AVGMeter()

                for key in cur_matrix:
                    train_matrix[key].update(cur_matrix[key])
                
                # backwards
                loss.backward()
                clip_grad_norm_(self.model.parameters(), 1.0)
                self.optim.step()
                train_loss.update(loss.item())

                # update ema
                if self.flag_use_ema_model:
                    if self.cfg['distributed']:
                        self.model.module.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch)
                    else:
                        self.model.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch)

                # print stats
                if (batch_id in print_freq_lst) or ((batch_id + 1) == total_batch):
                    if self.cfg['distributed']:
                        if dist.get_rank() == 0:
                            if flag_return_losses:
                                ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()])
                                logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}")
                            else:
                                logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}")
                    else:
                        if flag_return_losses:
                            ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()])
                            logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}")
                        else:
                            logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}")
            return train_loss, train_matrix
        elif flag == 'valid':
            n_loops_test = self.cfg['model'].get("num_loops_test", 1)
            self.model.eval()
            if self.cfg['distributed']:
                world_size = dist.get_world_size()
                self.valid_loader.sampler.set_epoch(epoch)

            valid_loss = AVGMeter()
            val_matrix = dict()
            # start data loops
            with torch.no_grad():
                for batch_id, batch in enumerate(self.valid_loader):
                    batch.to(self.device)
                    if self.flag_use_ema_model:
                        pred, loss = self.model(batch, num_loop_infer=n_loops_test, flag_use_ema_infer=flag_infer_ema)
                    else:
                        pred, loss = self.model(batch, num_loop_infer=n_loops_test)
                    cur_matrix = self.matrix(pred, mode='val')
                    # collect performance 1 --- matrix
                    if self.cfg['distributed']:
                        # get all res from multiple gpus 
                        for key in cur_matrix:
                            # tmp_value = cur_matrix[key].clone().detach().requires_grad_(False).cuda()
                            tmp_value = torch.tensor(cur_matrix[key]).cuda()
                            dist.all_reduce(tmp_value)
                            cur_matrix[key] = tmp_value.cpu().item() / world_size
                    if batch_id == 0: # record into val_matrix
                        for key in cur_matrix:
                            val_matrix[key] = AVGMeter()
                    for key in cur_matrix:
                            val_matrix[key].update(cur_matrix[key])
                    # collect performance 2 --- loss
                    if self.cfg['distributed']:
                        tmp_loss = loss.clone().detach()
                        dist.all_reduce(tmp_loss)
                        valid_loss.update(tmp_loss.cpu().item() / world_size)
                    else:
                        valid_loss.update(loss.cpu().item())
            
            return valid_loss, val_matrix
        else:
            raise ValueError(f'flag == {flag} not support, choice[train, valid]')

    
    def train(self):
        if self.ngpus > 1:
            dummy_batch_data = next(iter(self.train_loader))
            dummy_batch_data.to(self.device, non_blocking=True)
            with torch.no_grad():
                if self.flag_use_ema_model:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
                    _ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True)
                else:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
            
            if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
                logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M')

            local_rank = int(os.environ["LOCAL_RANK"])
            self.model = torch.nn.parallel.DistributedDataParallel(
                self.model,
                device_ids=[local_rank],
                output_device=local_rank,
                find_unused_parameters=True,
                #  find_unused_parameters=False
            )
        else:
            dummy_batch_data = next(iter(self.train_loader))
            dummy_batch_data.to(self.device, non_blocking=True)
            with torch.no_grad():
                # _ = self.model(dummy_batch_data, num_loop_infer=1)
                if self.flag_use_ema_model:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
                    _ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True)
                else:
                    _ = self.model(dummy_batch_data, num_loop_infer=1)
            logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M')

        
        if not self.resume_training:    
            self.perform_best = np.Infinity
            self.perform_best_ep = -1
            self.start_epoch = 0
            self.perform_best_metrics = {}
        else:
            self.perform_best, self.perform_best_ep, self.start_epoch, self.perform_best_metrics = self._init_training_wt_checkpoint(self.checkpt_path)
        
        local_best = self.perform_best
        local_best_ep = self.perform_best_ep
        local_best_metrics = self.perform_best_metrics
        if self.flag_use_ema_model:
            local_best_ema = self.perform_best
            local_best_ep_ema = self.perform_best_ep
            local_best_metrics_ema =self.perform_best_metrics
        for epoch in range(self.start_epoch, self.cfg['train']['epochs']):
            with Timer(rest_epochs=self.cfg['train']['epochs'] - (epoch + 1)) as timer:
                train_loss, train_matrix = self.exec_epoch(epoch, flag='train')
                valid_loss, val_matrix = self.exec_epoch(epoch, flag='valid')
                if self.flag_use_ema_model:
                    valid_loss_ema, valid_matrix_ema = self.exec_epoch(epoch, flag='valid', 
                                                             flag_infer_ema=True)
                if self.scheduler:
                    if isinstance(self.scheduler, ReduceLROnPlateau):
                        self.scheduler.step(valid_loss.agg())
                    else:
                        self.scheduler.step()
            if self.flag_use_ema_model:
                local_best, local_best_ep, local_best_ema, local_best_ep_ema,local_best_metrics_ema = self.summary_epoch(epoch,
                                            train_loss, train_matrix,
                                            valid_loss, val_matrix,
                                            timer, local_best, local_best_ep, local_best_metrics,
                                            local_best_ema=local_best_ema, 
                                            local_best_ep_ema=local_best_ep_ema,
                                            local_best_metrics_ema = local_best_metrics_ema,
                                            valid_loss_ema=valid_loss_ema, 
                                            val_matrix_ema=valid_matrix_ema)
            else:
                local_best, local_best_ep, local_best_metrics = self.summary_epoch(epoch,
                                            train_loss, train_matrix,
                                            valid_loss, val_matrix,
                                            timer, 
                                            local_best, local_best_ep,local_best_metrics)

        if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0):
            self.reporter.close()
        return local_best_ep_ema,local_best_metrics_ema

if __name__ == "__main__":
    str2bool = lambda x: x.lower() == 'true'
    parser = argparse.ArgumentParser()
    parser.add_argument("--out_dir", type=str, default="run_0")
    parser.add_argument('--config', type=str, default='./configs/default.yaml')
    parser.add_argument('--distributed', default=False, action='store_true')
    parser.add_argument('--local-rank', default=0, type=int, help='node rank for distributed training')
    parser.add_argument("--seed", type=int, default=2024)
    parser.add_argument("--ngpus", type=int, default=1)
    args = parser.parse_args()
    try:
        with open(args.config, 'r') as file:
            cfg = yaml.safe_load(file)
        for key, value in vars(args).items():
            if value is not None:
                cfg[key] = value
        cfg['log_path'] = os.path.join(cfg['log_path'], os.path.basename(args.config)[:-5])
        metadata = (cfg['data']['meta']['node'],
                    list(map(tuple, cfg['data']['meta']['edge'])))
        set_random_seed(cfg["seed"] if cfg["seed"] > 0 else 1, deterministic=False)
        if cfg['distributed']:
            rank, word_size = setup_distributed()
            if not os.path.exists(cfg["log_path"]) and rank == 0:
                os.makedirs(cfg["log_path"])
            if rank == 0:
                # curr_timestr = setup_default_logging(cfg["log_path"], False)
                curr_timestr = setup_default_logging_wt_dir(cfg["log_path"])
                cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr)
                os.makedirs(cfg["log_path"], exist_ok=True)
                csv_path = os.path.join(cfg["log_path"], "out_stat.csv")

                from shutil import copyfile
                output_yaml = os.path.join(cfg["log_path"], "config.yaml")
                copyfile(cfg['config'], output_yaml) 
            else:
                csv_path = None
            if rank == 0:
                logger.info("\n{}".format(pprint.pformat(cfg)))
            # make sure all folder are correctly created at rank == 0
            dist.barrier()
        else:
            if not os.path.exists(cfg["log_path"]):
                os.makedirs(cfg["log_path"])
            # curr_timestr = setup_default_logging(cfg["log_path"], False)
            curr_timestr = setup_default_logging_wt_dir(cfg["log_path"])
            cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr)
            os.makedirs(cfg["log_path"], exist_ok=True)
            csv_path = os.path.join(cfg["log_path"], "info_{}_stat.csv".format(curr_timestr))

            from shutil import copyfile
            output_yaml = os.path.join(cfg["log_path"], "config.yaml")
            copyfile(cfg['config'], output_yaml)

            logger.info("\n{}".format(pprint.pformat(cfg)))
        log_dir = os.path.join(args.out_dir, 'logs')
        pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
        oven = SubclassOven(cfg, log_dir)
        local_best_ep_ema,local_best_metrics_ema = oven.train()
        local_best_metrics_ema.update({"epoch":local_best_ep_ema})
        final_infos = {
            "IEEE39":{
                "means": local_best_metrics_ema
            }
        }
        pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
        with open(os.path.join(args.out_dir, "final_info.json"), "w") as f:
            json.dump(final_infos, f)
    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
        raise