File size: 6,062 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import sys
import tarfile
import collections
import torch.utils.data as data
import shutil
import numpy as np

from PIL import Image
from torchvision.datasets.utils import download_url, check_integrity

DATASET_YEAR_DICT = {
    '2012': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
        'filename': 'VOCtrainval_11-May-2012.tar',
        'md5': '6cd6e144f989b92b3379bac3b3de84fd',
        'base_dir': 'VOCdevkit/VOC2012'
    },
    '2011': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar',
        'filename': 'VOCtrainval_25-May-2011.tar',
        'md5': '6c3384ef61512963050cb5d687e5bf1e',
        'base_dir': 'TrainVal/VOCdevkit/VOC2011'
    },
    '2010': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar',
        'filename': 'VOCtrainval_03-May-2010.tar',
        'md5': 'da459979d0c395079b5c75ee67908abb',
        'base_dir': 'VOCdevkit/VOC2010'
    },
    '2009': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar',
        'filename': 'VOCtrainval_11-May-2009.tar',
        'md5': '59065e4b188729180974ef6572f6a212',
        'base_dir': 'VOCdevkit/VOC2009'
    },
    '2008': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar',
        'filename': 'VOCtrainval_11-May-2012.tar',
        'md5': '2629fa636546599198acfcfbfcf1904a',
        'base_dir': 'VOCdevkit/VOC2008'
    },
    '2007': {
        'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
        'filename': 'VOCtrainval_06-Nov-2007.tar',
        'md5': 'c52e279531787c972589f7e41ab4ae64',
        'base_dir': 'VOCdevkit/VOC2007'
    }
}


def voc_cmap(N=256, normalized=False):
    def bitget(byteval, idx):
        return ((byteval & (1 << idx)) != 0)

    dtype = 'float32' if normalized else 'uint8'
    cmap = np.zeros((N, 3), dtype=dtype)
    for i in range(N):
        r = g = b = 0
        c = i
        for j in range(8):
            r = r | (bitget(c, 0) << 7-j)
            g = g | (bitget(c, 1) << 7-j)
            b = b | (bitget(c, 2) << 7-j)
            c = c >> 3

        cmap[i] = np.array([r, g, b])

    cmap = cmap/255 if normalized else cmap
    return cmap

class VOCSegmentation(data.Dataset):
    """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.
    Args:
        root (string): Root directory of the VOC Dataset.
        year (string, optional): The dataset year, supports years 2007 to 2012.
        image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
    """
    cmap = voc_cmap()
    def __init__(self,
                 root,
                 year='2012',
                 image_set='train',
                 download=False,
                 transform=None):

        is_aug=False
        if year=='2012_aug':
            is_aug = True
            year = '2012'
        
        self.root = os.path.expanduser(root)
        self.year = year
        self.url = DATASET_YEAR_DICT[year]['url']
        self.filename = DATASET_YEAR_DICT[year]['filename']
        self.md5 = DATASET_YEAR_DICT[year]['md5']
        self.transform = transform
        
        self.image_set = image_set
        base_dir = DATASET_YEAR_DICT[year]['base_dir']
        voc_root = os.path.join(self.root, base_dir)
        image_dir = os.path.join(voc_root, 'JPEGImages')

        if download:
            download_extract(self.url, self.root, self.filename, self.md5)

        if not os.path.isdir(voc_root):
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')
        
        if is_aug and image_set=='train':
            mask_dir = os.path.join(voc_root, 'SegmentationClassAug')
            assert os.path.exists(mask_dir), "SegmentationClassAug not found, please refer to README.md and prepare it manually"
            split_f = os.path.join( self.root, 'train_aug.txt')#'./datasets/data/train_aug.txt'
        else:
            mask_dir = os.path.join(voc_root, 'SegmentationClass')
            splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation')
            split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')

        if not os.path.exists(split_f):
            raise ValueError(
                'Wrong image_set entered! Please use image_set="train" '
                'or image_set="trainval" or image_set="val"')

        with open(os.path.join(split_f), "r") as f:
            file_names = [x.strip() for x in f.readlines()]
        
        self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
        self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
        assert (len(self.images) == len(self.masks))

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (image, target) where target is the image segmentation.
        """
        img = Image.open(self.images[index]).convert('RGB')
        target = Image.open(self.masks[index])
        if self.transform is not None:
            img, target = self.transform(img, target)

        return img, target


    def __len__(self):
        return len(self.images)

    @classmethod
    def decode_target(cls, mask):
        """decode semantic mask to RGB image"""
        return cls.cmap[mask]

def download_extract(url, root, filename, md5):
    download_url(url, root, filename, md5)
    with tarfile.open(os.path.join(root, filename), "r") as tar:
        tar.extractall(path=root)