File size: 6,062 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
import sys
import tarfile
import collections
import torch.utils.data as data
import shutil
import numpy as np
from PIL import Image
from torchvision.datasets.utils import download_url, check_integrity
DATASET_YEAR_DICT = {
'2012': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
'filename': 'VOCtrainval_11-May-2012.tar',
'md5': '6cd6e144f989b92b3379bac3b3de84fd',
'base_dir': 'VOCdevkit/VOC2012'
},
'2011': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar',
'filename': 'VOCtrainval_25-May-2011.tar',
'md5': '6c3384ef61512963050cb5d687e5bf1e',
'base_dir': 'TrainVal/VOCdevkit/VOC2011'
},
'2010': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar',
'filename': 'VOCtrainval_03-May-2010.tar',
'md5': 'da459979d0c395079b5c75ee67908abb',
'base_dir': 'VOCdevkit/VOC2010'
},
'2009': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2009/VOCtrainval_11-May-2009.tar',
'filename': 'VOCtrainval_11-May-2009.tar',
'md5': '59065e4b188729180974ef6572f6a212',
'base_dir': 'VOCdevkit/VOC2009'
},
'2008': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2008/VOCtrainval_14-Jul-2008.tar',
'filename': 'VOCtrainval_11-May-2012.tar',
'md5': '2629fa636546599198acfcfbfcf1904a',
'base_dir': 'VOCdevkit/VOC2008'
},
'2007': {
'url': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
'filename': 'VOCtrainval_06-Nov-2007.tar',
'md5': 'c52e279531787c972589f7e41ab4ae64',
'base_dir': 'VOCdevkit/VOC2007'
}
}
def voc_cmap(N=256, normalized=False):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
dtype = 'float32' if normalized else 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
cmap = cmap/255 if normalized else cmap
return cmap
class VOCSegmentation(data.Dataset):
"""`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Segmentation Dataset.
Args:
root (string): Root directory of the VOC Dataset.
year (string, optional): The dataset year, supports years 2007 to 2012.
image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val``
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
"""
cmap = voc_cmap()
def __init__(self,
root,
year='2012',
image_set='train',
download=False,
transform=None):
is_aug=False
if year=='2012_aug':
is_aug = True
year = '2012'
self.root = os.path.expanduser(root)
self.year = year
self.url = DATASET_YEAR_DICT[year]['url']
self.filename = DATASET_YEAR_DICT[year]['filename']
self.md5 = DATASET_YEAR_DICT[year]['md5']
self.transform = transform
self.image_set = image_set
base_dir = DATASET_YEAR_DICT[year]['base_dir']
voc_root = os.path.join(self.root, base_dir)
image_dir = os.path.join(voc_root, 'JPEGImages')
if download:
download_extract(self.url, self.root, self.filename, self.md5)
if not os.path.isdir(voc_root):
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
if is_aug and image_set=='train':
mask_dir = os.path.join(voc_root, 'SegmentationClassAug')
assert os.path.exists(mask_dir), "SegmentationClassAug not found, please refer to README.md and prepare it manually"
split_f = os.path.join( self.root, 'train_aug.txt')#'./datasets/data/train_aug.txt'
else:
mask_dir = os.path.join(voc_root, 'SegmentationClass')
splits_dir = os.path.join(voc_root, 'ImageSets/Segmentation')
split_f = os.path.join(splits_dir, image_set.rstrip('\n') + '.txt')
if not os.path.exists(split_f):
raise ValueError(
'Wrong image_set entered! Please use image_set="train" '
'or image_set="trainval" or image_set="val"')
with open(os.path.join(split_f), "r") as f:
file_names = [x.strip() for x in f.readlines()]
self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
assert (len(self.images) == len(self.masks))
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is the image segmentation.
"""
img = Image.open(self.images[index]).convert('RGB')
target = Image.open(self.masks[index])
if self.transform is not None:
img, target = self.transform(img, target)
return img, target
def __len__(self):
return len(self.images)
@classmethod
def decode_target(cls, mask):
"""decode semantic mask to RGB image"""
return cls.cmap[mask]
def download_extract(url, root, filename, md5):
download_url(url, root, filename, md5)
with tarfile.open(os.path.join(root, filename), "r") as tar:
tar.extractall(path=root)
|