File size: 18,881 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
from tqdm import tqdm
import network
import utils
import os
import random
import argparse
import numpy as np
import json
from torch.utils import data
from datasets import VOCSegmentation, Cityscapes
from utils import ext_transforms as et
from metrics import StreamSegMetrics
from torch.utils.tensorboard import SummaryWriter # Added Line
import torch
import torch.nn as nn
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument("--out_dir", type=str, default="run_0")
# Datset Options
parser.add_argument("--data_root", type=str, default='',
help="path to Dataset")
parser.add_argument("--dataset", type=str, default='voc',
choices=['voc'], help='Name of dataset')
parser.add_argument("--num_classes", type=int, default=None,
help="num classes (default: None)")
# Deeplab Options
parser.add_argument("--model", type=str, default='deeplabv3plus_resnet101',
choices=['deeplabv3plus_resnet101', 'deeplabv3plus_resnet50', 'deeplabv3plus_mobilenet',
'deeplabv3plus_xception', 'deeplabv3plus_hrnetv2_48', 'deeplabv3plus_hrnetv2_32',
'deeplabv3_resnet101', 'deeplabv3_resnet50', 'deeplabv3_mobilenet',
'deeplabv3_xception', 'deeplabv3_hrnetv2_48', 'deeplabv3_hrnetv2_32'],
help='model name')
parser.add_argument("--separable_conv", action='store_true', default=False,
help="apply separable conv to decoder and aspp")
parser.add_argument("--output_stride", type=int, default=16, choices=[8, 16])
# Enhanced Model Options
parser.add_argument("--use_eoaNet", action='store_true', default=True,
help="Use Entropy-Optimized Attention Network")
parser.add_argument("--no_eoaNet", action='store_false', dest='use_eoaNet',
help="Disable Entropy-Optimized Attention Network")
parser.add_argument("--msa_scales", nargs='+', type=int, default=[1, 2, 4],
help="Scales for Multi-Scale Attention")
parser.add_argument("--eog_beta", type=float, default=0.3,
help="Entropy threshold for Entropy-Optimized Gating")
# Train Options
parser.add_argument("--test_only", action='store_true', default=False)
parser.add_argument("--save_val_results", action='store_true', default=False,
help="save segmentation results to \"./results\"")
parser.add_argument("--total_itrs", type=int, default=30e3,
help="epoch number (default: 30k 30e3)")
parser.add_argument("--lr", type=float, default=0.02,
help="learning rate (default: 0.01)")
parser.add_argument("--lr_policy", type=str, default='poly', choices=['poly', 'step'],
help="learning rate scheduler policy")
parser.add_argument("--step_size", type=int, default=10000)
parser.add_argument("--crop_val", action='store_true', default=True,
help='crop validation (default: False)')
parser.add_argument("--batch_size", type=int, default=32,
help='batch size (default: 16)')
parser.add_argument("--val_batch_size", type=int, default=4,
help='batch size for validation (default: 4)')
parser.add_argument("--crop_size", type=int, default=513)
parser.add_argument("--ckpt", default=None, type=str,
help="restore from checkpoint")
parser.add_argument("--continue_training", action='store_true', default=False)
parser.add_argument("--loss_type", type=str, default='cross_entropy',
choices=['cross_entropy', 'focal_loss'], help="loss type (default: False)")
parser.add_argument("--gpu_id", type=str, default='0,1',
help="GPU ID")
parser.add_argument("--weight_decay", type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument("--random_seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--print_interval", type=int, default=10,
help="print interval of loss (default: 10)")
parser.add_argument("--val_interval", type=int, default=100,
help="epoch interval for eval (default: 100)")
parser.add_argument("--download", action='store_true', default=False,
help="download datasets")
# PASCAL VOC Options
parser.add_argument("--year", type=str, default='2012_aug',
choices=['2012_aug', '2012', '2011', '2009', '2008', '2007'], help='year of VOC')
return parser
def get_dataset(opts):
""" Dataset And Augmentation
"""
if opts.dataset == 'voc':
train_transform = et.ExtCompose([
# et.ExtResize(size=opts.crop_size),
et.ExtRandomScale((0.5, 2.0)),
et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size), pad_if_needed=True),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if opts.crop_val:
val_transform = et.ExtCompose([
et.ExtResize(opts.crop_size),
et.ExtCenterCrop(opts.crop_size),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
else:
val_transform = et.ExtCompose([
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
image_set='train', download=opts.download, transform=train_transform)
val_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
image_set='val', download=False, transform=val_transform)
if opts.dataset == 'cityscapes':
train_transform = et.ExtCompose([
# et.ExtResize( 512 ),
et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size)),
et.ExtColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
val_transform = et.ExtCompose([
# et.ExtResize( 512 ),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dst = Cityscapes(root=opts.data_root,
split='train', transform=train_transform)
val_dst = Cityscapes(root=opts.data_root,
split='val', transform=val_transform)
return train_dst, val_dst
def validate(opts, model, loader, device, metrics, ret_samples_ids=None):
"""Do validation and return specified samples"""
metrics.reset()
ret_samples = []
if opts.save_val_results:
if not os.path.exists('results'):
os.mkdir('results')
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
img_id = 0
with torch.no_grad():
for i, (images, labels) in tqdm(enumerate(loader)):
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
outputs = model(images)
preds = outputs.detach().max(dim=1)[1].cpu().numpy()
targets = labels.cpu().numpy()
metrics.update(targets, preds)
if ret_samples_ids is not None and i in ret_samples_ids: # get vis samples
ret_samples.append(
(images[0].detach().cpu().numpy(), targets[0], preds[0]))
if opts.save_val_results:
for i in range(len(images)):
image = images[i].detach().cpu().numpy()
target = targets[i]
pred = preds[i]
image = (denorm(image) * 255).transpose(1, 2, 0).astype(np.uint8)
target = loader.dataset.decode_target(target).astype(np.uint8)
pred = loader.dataset.decode_target(pred).astype(np.uint8)
Image.fromarray(image).save('results/%d_image.png' % img_id)
Image.fromarray(target).save('results/%d_target.png' % img_id)
Image.fromarray(pred).save('results/%d_pred.png' % img_id)
fig = plt.figure()
plt.imshow(image)
plt.axis('off')
plt.imshow(pred, alpha=0.7)
ax = plt.gca()
ax.xaxis.set_major_locator(matplotlib.ticker.NullLocator())
ax.yaxis.set_major_locator(matplotlib.ticker.NullLocator())
plt.savefig('results/%d_overlay.png' % img_id, bbox_inches='tight', pad_inches=0)
plt.close()
img_id += 1
score = metrics.get_results()
return score, ret_samples
def main(opts):
if opts.dataset.lower() == 'voc':
opts.num_classes = 21
elif opts.dataset.lower() == 'cityscapes':
opts.num_classes = 19
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Device: %s" % device)
# Setup random seed
torch.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# Setup TensorBoard writer
writer = SummaryWriter(log_dir='logs') # Line 1071
# Setup dataloader
if opts.dataset == 'voc' and not opts.crop_val:
opts.val_batch_size = 1
train_dst, val_dst = get_dataset(opts)
# Adjust batch size if dataset is smaller than batch size
effective_batch_size = min(opts.batch_size, len(train_dst))
effective_val_batch_size = min(opts.val_batch_size, len(val_dst))
if effective_batch_size < opts.batch_size:
print(f"Warning: Reducing batch size from {opts.batch_size} to {effective_batch_size} due to small dataset")
train_loader = data.DataLoader(
train_dst, batch_size=opts.batch_size, shuffle=True, num_workers=2,
drop_last=False) # drop_last=True to ignore single-image batches.
val_loader = data.DataLoader(
val_dst, batch_size=effective_val_batch_size, shuffle=True, num_workers=2)
print("Dataset: %s, Train set: %d, Val set: %d" %
(opts.dataset, len(train_dst), len(val_dst)))
# Set up model (all models are 'constructed at network.modeling)
model = network.modeling.__dict__[opts.model](
num_classes=opts.num_classes,
output_stride=opts.output_stride,
use_eoaNet=opts.use_eoaNet,
msa_scales=opts.msa_scales,
eog_beta=opts.eog_beta
)
if opts.separable_conv and 'plus' in opts.model:
network.convert_to_separable_conv(model.classifier)
utils.set_bn_momentum(model.backbone, momentum=0.01)
# Set up metrics
metrics = StreamSegMetrics(opts.num_classes)
# Set up optimizer
optimizer = torch.optim.SGD(params=[
{'params': model.backbone.parameters(), 'lr': 0.1 * opts.lr},
{'params': model.classifier.parameters(), 'lr': opts.lr},
], lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
# optimizer = torch.optim.SGD(params=model.parameters(), lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
# torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
if opts.lr_policy == 'poly':
scheduler = utils.PolyLR(optimizer, opts.total_itrs, power=0.9)
elif opts.lr_policy == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.step_size, gamma=0.1)
# Set up criterion
# criterion = utils.get_loss(opts.loss_type)
if opts.loss_type == 'focal_loss':
criterion = utils.FocalLoss(ignore_index=255, size_average=True)
elif opts.loss_type == 'cross_entropy':
criterion = nn.CrossEntropyLoss(ignore_index=255, reduction='mean')
def save_ckpt(path):
""" save current model
"""
torch.save({
"cur_itrs": cur_itrs,
"model_state": model.module.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_score": best_score,
}, path)
print("Model saved as %s" % path)
if not os.path.exists('checkpoints'):
os.mkdir('checkpoints')
# Restore
best_score = 0.0
cur_itrs = 0
cur_epochs = 0
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
if opts.ckpt is not None and os.path.isfile(opts.ckpt):
# https://github.com/VainF/DeepLabV3Plus-Pytorch/issues/8#issuecomment-605601402, @PytaichukBohdan
checkpoint = torch.load(opts.ckpt, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint["model_state"])
model = nn.DataParallel(model)
model.to(device)
if opts.continue_training:
optimizer.load_state_dict(checkpoint["optimizer_state"])
scheduler.load_state_dict(checkpoint["scheduler_state"])
cur_itrs = checkpoint["cur_itrs"]
best_score = checkpoint['best_score']
print("Training state restored from %s" % opts.ckpt)
print("Model restored from %s" % opts.ckpt)
del checkpoint # free memory
else:
print("[!] Retrain")
model = nn.DataParallel(model)
model.to(device)
# ========== Train Loop ==========#
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # denormalization for ori images
if opts.test_only:
model.eval()
val_score, ret_samples = validate(
opts=opts, model=model, loader=val_loader, device=device, metrics=metrics)
print(metrics.to_str(val_score))
writer.close() # Close writer before returning # Line 1089
return
interval_loss = 0
latest_checkpoints = []
if not os.path.exists(f'checkpoints'):
os.mkdir(f'checkpoints')
while True: # cur_itrs < opts.total_itrs:
# ===== Train =====
model.train()
cur_epochs += 1
for (images, labels) in train_loader:
cur_itrs += 1
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
np_loss = loss.detach().cpu().numpy()
interval_loss += np_loss
writer.add_scalar('Loss/train', np_loss, cur_itrs) # Line 1093
if (cur_itrs) % 10 == 0:
interval_loss = interval_loss / 10
print("Epoch %d, Itrs %d/%d, Loss=%f" %
(cur_epochs, cur_itrs, opts.total_itrs, interval_loss))
interval_loss = 0.0
if (cur_itrs) % opts.val_interval == 0:
ckpt_path = f'checkpoints/latest_{cur_itrs}_{opts.model}_{opts.dataset}_os{opts.output_stride}.pth'
save_ckpt(ckpt_path)
latest_checkpoints.append(ckpt_path)
# Keep only the latest 2 checkpoints
if len(latest_checkpoints) > 2:
# Get the path of the oldest checkpoint to remove
oldest_ckpt_path = latest_checkpoints.pop(0)
try:
# Attempt to remove the file from the filesystem
os.remove(oldest_ckpt_path)
print(f"Successfully removed old checkpoint: {oldest_ckpt_path}") # Optional: logging/confirmation
except FileNotFoundError:
# Handle the case where the file might already be gone for some reason
print(f"Warning: Could not remove checkpoint because it was not found: {oldest_ckpt_path}")
except OSError as e:
# Handle other potential errors like permission issues
print(f"Error removing checkpoint {oldest_ckpt_path}: {e}")
print("validation...")
model.eval()
val_score, ret_samples = validate(
opts=opts, model=model, loader=val_loader, device=device, metrics=metrics)
print(metrics.to_str(val_score))
# Log validation metrics to TensorBoard
writer.add_scalar('Metrics/Mean_IoU', val_score['Mean IoU'], cur_itrs) # Line 1128
writer.add_scalar('Metrics/Overall_Acc', val_score['Overall Acc'], cur_itrs) # Line 1129
writer.add_scalar('Metrics/Mean_Acc', val_score['Mean Acc'], cur_itrs) # Line 1130
if val_score['Mean IoU'] > best_score: # save best model
best_score = val_score['Mean IoU']
save_ckpt(f'checkpoints/best_{opts.model}_{opts.dataset}_os{opts.output_stride}.pth')
with open(f'checkpoints/best_score.txt', 'a') as f:
f.write(f"iter:{cur_itrs}\n{str(best_score)}\n")
with open(f"final_info.json", "w") as f:
final_info = {
"voc12_aug": {
"means": {
"mIoU": val_score['Mean IoU'],
"OA": val_score['Overall Acc'],
"mAcc": val_score['Mean IoU']
}
}
}
json.dump(final_info, f, indent=4)
model.train()
scheduler.step()
if cur_itrs >= opts.total_itrs:
writer.close()
return
if __name__ == '__main__':
args = get_argparser().parse_args()
try:
main(args)
except Exception as e:
import traceback
print("Original error in subprocess:", flush=True)
traceback.print_exc(file=open("traceback.log", "w"))
raise
|