File size: 18,881 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from tqdm import tqdm
import network
import utils
import os
import random
import argparse
import numpy as np
import json

from torch.utils import data
from datasets import VOCSegmentation, Cityscapes
from utils import ext_transforms as et
from metrics import StreamSegMetrics
from torch.utils.tensorboard import SummaryWriter # Added Line

import torch
import torch.nn as nn

from PIL import Image
import matplotlib
import matplotlib.pyplot as plt


def get_argparser():
    parser = argparse.ArgumentParser()
    parser.add_argument("--out_dir", type=str, default="run_0")

    # Datset Options
    parser.add_argument("--data_root", type=str, default='',
                        help="path to Dataset")
    parser.add_argument("--dataset", type=str, default='voc',
                        choices=['voc'], help='Name of dataset')
    parser.add_argument("--num_classes", type=int, default=None,
                        help="num classes (default: None)")

    # Deeplab Options
    parser.add_argument("--model", type=str, default='deeplabv3plus_resnet101',
                        choices=['deeplabv3plus_resnet101', 'deeplabv3plus_resnet50', 'deeplabv3plus_mobilenet', 
                                 'deeplabv3plus_xception', 'deeplabv3plus_hrnetv2_48', 'deeplabv3plus_hrnetv2_32',
                                 'deeplabv3_resnet101', 'deeplabv3_resnet50', 'deeplabv3_mobilenet', 
                                 'deeplabv3_xception', 'deeplabv3_hrnetv2_48', 'deeplabv3_hrnetv2_32'], 
                        help='model name')
    parser.add_argument("--separable_conv", action='store_true', default=False,
                        help="apply separable conv to decoder and aspp")
    parser.add_argument("--output_stride", type=int, default=16, choices=[8, 16])
    
    # Enhanced Model Options
    parser.add_argument("--use_eoaNet", action='store_true', default=True,
                        help="Use Entropy-Optimized Attention Network")
    parser.add_argument("--no_eoaNet", action='store_false', dest='use_eoaNet',
                        help="Disable Entropy-Optimized Attention Network")
    parser.add_argument("--msa_scales", nargs='+', type=int, default=[1, 2, 4],
                        help="Scales for Multi-Scale Attention")
    parser.add_argument("--eog_beta", type=float, default=0.3,
                        help="Entropy threshold for Entropy-Optimized Gating")

    # Train Options
    parser.add_argument("--test_only", action='store_true', default=False)
    parser.add_argument("--save_val_results", action='store_true', default=False,
                        help="save segmentation results to \"./results\"")
    parser.add_argument("--total_itrs", type=int, default=30e3,
                        help="epoch number (default: 30k 30e3)")
    parser.add_argument("--lr", type=float, default=0.02,
                        help="learning rate (default: 0.01)")
    parser.add_argument("--lr_policy", type=str, default='poly', choices=['poly', 'step'],
                        help="learning rate scheduler policy")
    parser.add_argument("--step_size", type=int, default=10000)
    parser.add_argument("--crop_val", action='store_true', default=True,
                        help='crop validation (default: False)')
    parser.add_argument("--batch_size", type=int, default=32,
                        help='batch size (default: 16)')
    parser.add_argument("--val_batch_size", type=int, default=4,
                        help='batch size for validation (default: 4)')
    parser.add_argument("--crop_size", type=int, default=513)

    parser.add_argument("--ckpt", default=None, type=str,
                        help="restore from checkpoint")
    parser.add_argument("--continue_training", action='store_true', default=False)

    parser.add_argument("--loss_type", type=str, default='cross_entropy',
                        choices=['cross_entropy', 'focal_loss'], help="loss type (default: False)")
    parser.add_argument("--gpu_id", type=str, default='0,1',
                        help="GPU ID")
    parser.add_argument("--weight_decay", type=float, default=1e-4,
                        help='weight decay (default: 1e-4)')
    parser.add_argument("--random_seed", type=int, default=1,
                        help="random seed (default: 1)")
    parser.add_argument("--print_interval", type=int, default=10,
                        help="print interval of loss (default: 10)")
    parser.add_argument("--val_interval", type=int, default=100,
                        help="epoch interval for eval (default: 100)")
    parser.add_argument("--download", action='store_true', default=False,
                        help="download datasets")

    # PASCAL VOC Options
    parser.add_argument("--year", type=str, default='2012_aug',
                        choices=['2012_aug', '2012', '2011', '2009', '2008', '2007'], help='year of VOC')
    return parser


def get_dataset(opts):
    """ Dataset And Augmentation
    """
    if opts.dataset == 'voc':
        train_transform = et.ExtCompose([
            # et.ExtResize(size=opts.crop_size),
            et.ExtRandomScale((0.5, 2.0)),
            et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size), pad_if_needed=True),
            et.ExtRandomHorizontalFlip(),
            et.ExtToTensor(),
            et.ExtNormalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
        ])
        if opts.crop_val:
            val_transform = et.ExtCompose([
                et.ExtResize(opts.crop_size),
                et.ExtCenterCrop(opts.crop_size),
                et.ExtToTensor(),
                et.ExtNormalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225]),
            ])
        else:
            val_transform = et.ExtCompose([
                et.ExtToTensor(),
                et.ExtNormalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225]),
            ])
        train_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
                                    image_set='train', download=opts.download, transform=train_transform)
        val_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
                                  image_set='val', download=False, transform=val_transform)

    if opts.dataset == 'cityscapes':
        train_transform = et.ExtCompose([
            # et.ExtResize( 512 ),
            et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size)),
            et.ExtColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
            et.ExtRandomHorizontalFlip(),
            et.ExtToTensor(),
            et.ExtNormalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
        ])

        val_transform = et.ExtCompose([
            # et.ExtResize( 512 ),
            et.ExtToTensor(),
            et.ExtNormalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225]),
        ])

        train_dst = Cityscapes(root=opts.data_root,
                               split='train', transform=train_transform)
        val_dst = Cityscapes(root=opts.data_root,
                             split='val', transform=val_transform)
    return train_dst, val_dst


def validate(opts, model, loader, device, metrics, ret_samples_ids=None):
    """Do validation and return specified samples"""
    metrics.reset()
    ret_samples = []
    if opts.save_val_results:
        if not os.path.exists('results'):
            os.mkdir('results')
        denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
                                   std=[0.229, 0.224, 0.225])
        img_id = 0

    with torch.no_grad():
        for i, (images, labels) in tqdm(enumerate(loader)):

            images = images.to(device, dtype=torch.float32)
            labels = labels.to(device, dtype=torch.long)

            outputs = model(images)
            preds = outputs.detach().max(dim=1)[1].cpu().numpy()
            targets = labels.cpu().numpy()

            metrics.update(targets, preds)
            if ret_samples_ids is not None and i in ret_samples_ids:  # get vis samples
                ret_samples.append(
                    (images[0].detach().cpu().numpy(), targets[0], preds[0]))

            if opts.save_val_results:
                for i in range(len(images)):
                    image = images[i].detach().cpu().numpy()
                    target = targets[i]
                    pred = preds[i]

                    image = (denorm(image) * 255).transpose(1, 2, 0).astype(np.uint8)
                    target = loader.dataset.decode_target(target).astype(np.uint8)
                    pred = loader.dataset.decode_target(pred).astype(np.uint8)

                    Image.fromarray(image).save('results/%d_image.png' % img_id)
                    Image.fromarray(target).save('results/%d_target.png' % img_id)
                    Image.fromarray(pred).save('results/%d_pred.png' % img_id)

                    fig = plt.figure()
                    plt.imshow(image)
                    plt.axis('off')
                    plt.imshow(pred, alpha=0.7)
                    ax = plt.gca()
                    ax.xaxis.set_major_locator(matplotlib.ticker.NullLocator())
                    ax.yaxis.set_major_locator(matplotlib.ticker.NullLocator())
                    plt.savefig('results/%d_overlay.png' % img_id, bbox_inches='tight', pad_inches=0)
                    plt.close()
                    img_id += 1

        score = metrics.get_results()
    return score, ret_samples

def main(opts):
    if opts.dataset.lower() == 'voc':
        opts.num_classes = 21
    elif opts.dataset.lower() == 'cityscapes':
        opts.num_classes = 19

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print("Device: %s" % device)

    # Setup random seed
    torch.manual_seed(opts.random_seed)
    np.random.seed(opts.random_seed)
    random.seed(opts.random_seed)
    
    # Setup TensorBoard writer
    writer = SummaryWriter(log_dir='logs') # Line 1071
    
    # Setup dataloader
    if opts.dataset == 'voc' and not opts.crop_val:
        opts.val_batch_size = 1

    train_dst, val_dst = get_dataset(opts)
    
    # Adjust batch size if dataset is smaller than batch size
    effective_batch_size = min(opts.batch_size, len(train_dst))
    effective_val_batch_size = min(opts.val_batch_size, len(val_dst))
    
    if effective_batch_size < opts.batch_size:
        print(f"Warning: Reducing batch size from {opts.batch_size} to {effective_batch_size} due to small dataset")
    
    train_loader = data.DataLoader(
        train_dst, batch_size=opts.batch_size, shuffle=True, num_workers=2,
        drop_last=False)  # drop_last=True to ignore single-image batches.
    val_loader = data.DataLoader(
        val_dst, batch_size=effective_val_batch_size, shuffle=True, num_workers=2)
    print("Dataset: %s, Train set: %d, Val set: %d" %
          (opts.dataset, len(train_dst), len(val_dst)))

    # Set up model (all models are 'constructed at network.modeling)
    model = network.modeling.__dict__[opts.model](
        num_classes=opts.num_classes, 
        output_stride=opts.output_stride,
        use_eoaNet=opts.use_eoaNet,
        msa_scales=opts.msa_scales,
        eog_beta=opts.eog_beta
    )
    if opts.separable_conv and 'plus' in opts.model:
        network.convert_to_separable_conv(model.classifier)
    utils.set_bn_momentum(model.backbone, momentum=0.01)

    # Set up metrics
    metrics = StreamSegMetrics(opts.num_classes)

    # Set up optimizer
    optimizer = torch.optim.SGD(params=[
        {'params': model.backbone.parameters(), 'lr': 0.1 * opts.lr},
        {'params': model.classifier.parameters(), 'lr': opts.lr},
    ], lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
    # optimizer = torch.optim.SGD(params=model.parameters(), lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
    # torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
    if opts.lr_policy == 'poly':
        scheduler = utils.PolyLR(optimizer, opts.total_itrs, power=0.9)
    elif opts.lr_policy == 'step':
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.step_size, gamma=0.1)

    # Set up criterion
    # criterion = utils.get_loss(opts.loss_type)
    if opts.loss_type == 'focal_loss':
        criterion = utils.FocalLoss(ignore_index=255, size_average=True)
    elif opts.loss_type == 'cross_entropy':
        criterion = nn.CrossEntropyLoss(ignore_index=255, reduction='mean')

    def save_ckpt(path):
        """ save current model
        """
        torch.save({
            "cur_itrs": cur_itrs,
            "model_state": model.module.state_dict(),
            "optimizer_state": optimizer.state_dict(),
            "scheduler_state": scheduler.state_dict(),
            "best_score": best_score,
        }, path)
        print("Model saved as %s" % path)
        
    if not os.path.exists('checkpoints'):
        os.mkdir('checkpoints')
        
    # Restore
    best_score = 0.0
    cur_itrs = 0
    cur_epochs = 0
    
    model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
    if opts.ckpt is not None and os.path.isfile(opts.ckpt):
        # https://github.com/VainF/DeepLabV3Plus-Pytorch/issues/8#issuecomment-605601402, @PytaichukBohdan
        checkpoint = torch.load(opts.ckpt, map_location=torch.device('cpu'))
        model.load_state_dict(checkpoint["model_state"])
        model = nn.DataParallel(model)
        model.to(device)
        if opts.continue_training:
            optimizer.load_state_dict(checkpoint["optimizer_state"])
            scheduler.load_state_dict(checkpoint["scheduler_state"])
            cur_itrs = checkpoint["cur_itrs"]
            best_score = checkpoint['best_score']
            print("Training state restored from %s" % opts.ckpt)
        print("Model restored from %s" % opts.ckpt)
        del checkpoint  # free memory
    else:
        print("[!] Retrain")
        model = nn.DataParallel(model)
        model.to(device)

    # ==========   Train Loop   ==========#
    denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # denormalization for ori images

    if opts.test_only:
        model.eval()
        val_score, ret_samples = validate(
            opts=opts, model=model, loader=val_loader, device=device, metrics=metrics)
        print(metrics.to_str(val_score))
        writer.close() # Close writer before returning # Line 1089
        return

    interval_loss = 0
    latest_checkpoints = []
    if not os.path.exists(f'checkpoints'):
        os.mkdir(f'checkpoints')
    while True:  # cur_itrs < opts.total_itrs:
        # =====  Train  =====
        model.train()
        cur_epochs += 1
        for (images, labels) in train_loader:
            cur_itrs += 1

            images = images.to(device, dtype=torch.float32)
            labels = labels.to(device, dtype=torch.long)

            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            np_loss = loss.detach().cpu().numpy()
            interval_loss += np_loss
            
            writer.add_scalar('Loss/train', np_loss, cur_itrs) # Line 1093

            if (cur_itrs) % 10 == 0:
                interval_loss = interval_loss / 10
                print("Epoch %d, Itrs %d/%d, Loss=%f" %
                      (cur_epochs, cur_itrs, opts.total_itrs, interval_loss))
                interval_loss = 0.0

            if (cur_itrs) % opts.val_interval == 0:
                ckpt_path = f'checkpoints/latest_{cur_itrs}_{opts.model}_{opts.dataset}_os{opts.output_stride}.pth'
                save_ckpt(ckpt_path)
                latest_checkpoints.append(ckpt_path)
                # Keep only the latest 2 checkpoints
                if len(latest_checkpoints) > 2:
                    # Get the path of the oldest checkpoint to remove
                    oldest_ckpt_path = latest_checkpoints.pop(0)
                    try:
                        # Attempt to remove the file from the filesystem
                        os.remove(oldest_ckpt_path)
                        print(f"Successfully removed old checkpoint: {oldest_ckpt_path}") # Optional: logging/confirmation
                    except FileNotFoundError:
                        # Handle the case where the file might already be gone for some reason
                        print(f"Warning: Could not remove checkpoint because it was not found: {oldest_ckpt_path}")
                    except OSError as e:
                        # Handle other potential errors like permission issues
                        print(f"Error removing checkpoint {oldest_ckpt_path}: {e}")
                        
                print("validation...")
                model.eval()
                val_score, ret_samples = validate(
                    opts=opts, model=model, loader=val_loader, device=device, metrics=metrics)
                print(metrics.to_str(val_score))
                # Log validation metrics to TensorBoard
                writer.add_scalar('Metrics/Mean_IoU', val_score['Mean IoU'], cur_itrs) # Line 1128
                writer.add_scalar('Metrics/Overall_Acc', val_score['Overall Acc'], cur_itrs) # Line 1129
                writer.add_scalar('Metrics/Mean_Acc', val_score['Mean Acc'], cur_itrs) # Line 1130

                if val_score['Mean IoU'] > best_score:  # save best model
                    best_score = val_score['Mean IoU']
                    save_ckpt(f'checkpoints/best_{opts.model}_{opts.dataset}_os{opts.output_stride}.pth')
                    with open(f'checkpoints/best_score.txt', 'a') as f:
                        f.write(f"iter:{cur_itrs}\n{str(best_score)}\n")
                    with open(f"final_info.json", "w") as f:
                        final_info = {
                            "voc12_aug": {
                                "means": {
                                    "mIoU": val_score['Mean IoU'],
                                    "OA": val_score['Overall Acc'],
                                    "mAcc": val_score['Mean IoU']
                                }
                            }
                        }
                        json.dump(final_info, f, indent=4)

                model.train()
            scheduler.step()

            if cur_itrs >= opts.total_itrs:
                writer.close()
                return


if __name__ == '__main__':
    args = get_argparser().parse_args()
    try:
        main(args)
    except Exception as e:
        import traceback
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open("traceback.log", "w"))
        raise